From Wikipedia, the free encyclopedia
Гасна хроматографија () или Гасно-течна хроматографија (), је хроматографска метода раздвајања и детекције органских једињења. Код ове инструменталне методе мобилна фаза је и уједно носећи гас, обично инертан (најчешће аргон или хелијум) или гас који не реагује са испитиваним узорком (најчешће азот) а стационарна фаза је лепеза избора од молекулског сита па до капиларних колона пресвучених вискозном течношћу или микроскопским слојевима полимера[1]. Инструмент који се користи код ових техника, гасно хроматографског раздвајања и анализе, се назива гасни хроматограф.
Гасна хроматографија је различита техника од других врста хроматографије као што су или . Основна разлика је у начину проласка испитиване супстанце кроз колону, узорак је увек у гасном стању. Код пуњених (пакованих) колона узорак пролази кроз стационарну фазу и компоненте узорка бивају задржане различито време у колони у зависности од величине молекула. Капиларне колоне су данас много заступљеније и код капиларних колона је веома слично, само што се време задржавања регулише са зидовима колоне које могу бити пресвучене са различитом врстом стационарних фаза и на тај начин компоненте узорка бивају задржане и раздвојене једно од друге и то време задржавања (време детектовања) се зове ретенционо време. На свакој колони се налази једна плочица која представља својеврсну личну карту колоне, са свим информацијама везаним за ту колону (нпр. попречни пресек).
Гасни хроматограф је инструмент који се у хемијској анализи користи за раздвајање компоненти из смеше датог узорка. Принцип гасно хроматографске анализе је у проласку узорка (ношен гасом носачем) кроз колону која раздваја узорак на компоненте у зависности од физичких и хемијских особина компоненти и њихових могућих узајамних односа са стационарном фазом, колумским пуњењем. Раздвајањем компонената смеше, различитим временским задржавањем компоненти у колони (свака компонента има своје ретенционо време) и њиховом детекцијом се врши идентификација појединих компоненти. На крају колоне је детектор који електричним путем региструје поједине компоненте узорка. Брзина проласка узорка кроз колону се одређује температуром колоне у пећи и подешавањем брзине проласка носећег гаса ().
Приликом гасно хроматографске анализе преко инјектора се у колону са микро шприцем убацује тачно позната запремина узорка (запремина је изражена у микролитрима (). Ту даље улогу носиоца преузима гас носач, који узорак проноси кроз колону. Проток гаса носача је и даље стабилан али узорак се разлаже на саставне делове због различитих адсорбционих способности појединих компоненти узорка. Повећавањем дужине кретања појединих компоненти кроз колону, повећава се и дистанца између њих, тако да у идеалном случају, приликом изласка узорка из колоне и стизања до детектора, све компоненте узорка су јасно раздвојене и свака посебно наилази на детектор. Помоћу детектора, и времена излажења, се идентификује свака поједина компонента и концентрација сваке у датом узорку.
Инјектор, колона и детектор се морају налазити у контролисаном термостатичном делу гасног хроматографа[2]
Аутосемплер или аутоматско узорковање може бити или је део гасног хроматографа који аутоматски узима узорак који се испитује и убацује га у инјектор. Предност аутосемплера над мануалним узорковањем је у поновљивости и оптимизацији времена, што је један од битних фактора за одређивање природе испитиваног узорка и њених компоненти.
Постоји велики број различитих аутосемплера и они се деле по:
Инјектор је део гасног хроматографа који је директно повезан са колоном и служи да би се узорак убацио у колону за испитивање.
Врсте инјектора:
Традиционално колоне у гасно хроматографској анализи се деле на две основне врсте:
У новије време развијају се нове технике и методе, тако да постоји и трећа врста:
Температурна зависност молекуларне адсорпције појединих компонената смеше и њихово кретање кроз колону захтева веома пажљиву контролу температуре, чак до неколико десетих делова степена. Смањење температуре доводи до бољег раздвајања компоненти али такође и до дугачког елуционог времена (времена излажења). Због овога је уведен и такозвани температурни програм, где се температура постепено повећава или смањује у зависности од потребе.
Избор носећег гаса или мобилне фазе је такође важан фактор у гасној хроматографији, за сада се као највише коришћен сматра хелијум, због својих особина опште инертности и незапаљивости, као и најбољих хроматографских перформанси (након водоника). За хелијумом пуно не заостаје (по употреби) ни водоник па затим азот и аргон а у неким случајевима и ваздух.
У гасној хроматографији се користе више врста детектора. Најпознатији и најкоришћенији међу њима су пламено јонизациони детектор () и термално проводљиви детектор (). Оба детектора су доста универзална и могу детектовати велики опсег компоненти са широком варијацијом концентрације. Термално проводљиви детектори су за нијансу универзалнији и могу детектовати већину компоненти чија је термална проводљивост већа од термалне проводљивости носећег гаса, на задатој температури. Пламено јонизациони детектори су осетљивији на угљоводонична једињења и не могу детектовати воду. Такође предност детектора над детектором је да не уништава испитиване компоненте (пламено јонизациони их сагорева) и могу се поставити у серији приликом анализе што омогућава додатна испитивања за једну те исту компоненту.
Табела приказује типичне детекторе којима се служи гасна хроматографија[5].
Врста детектора | Природа узорка | Детекциони лимит |
---|---|---|
Пламено јонизациони () | Угљоводоници | 1 |
Термално проводљиви () | Универзални | 500 |
Електронско апсорпциони () | Хлорна једињења | 5 fg/s |
Масени спектрометар () | Универзални | 0.25 до 100 |
Термални () | Азотна & Фосфорна једињења | 0.1 (); 1 () |
Електро проводљиви | Једињења хлора, сумпора или азота | 0.5 , 2 , 4 |
Фотојонизациони () | Једињења Јонизована зрачењем | 2 |
Фуријеров ред трансформације () | Органска једињења | 0.2 до 40 |
Детекција органских једињења је најефектнија ако се користи пламено јонизовани детектор. Биохемијске компоненте као што су протеини, нуклеотиди и фармацеутске смеше се такође могу радити са пламено јонизованим детекторим, али такође са термално проводљивим, термалним или електро проводљивим што је омогућено присуством атома азота, фосфора или сумпора у узорку.
Неки гасни хроматографи су спојени за масени спектрометар који у овом случају служи као детектор. Ова комбинација је поната као (). Затим, неке () су спојене на нуклеарно мегнетско резонантни спектрометар () који у овом случају игра улогу помоћног детектора. Ова комбинација је позната као (). Такође је могуће повезати () за инфрацрвени спектрофотометар () који такође у овом случају служи као помоћни детектор. Ова комбинација је позната као (). Ове комбинације служе само у изузетним приликама и нису уобичајне, али су компатибилне и у неким изузетним случајевима су корисне и могу послужити, већина стандардних испитивања се врши у са (), () или комбинацији ().
Под гасно хроматографском методом се подразумевају услови под којима се одиграва анализа. Процес одређивања идеалних услова анализе се назива Развојна метода.
Варијабилне компоненте гасно хероматографске анализе су носећи гас и њен проток () и температура, температура улазног отвора гасног хроматографа, температура колоне, температура детектора и температурни програм за поједине анализе, величина узорка и инјекторска техника.
Највише коришћени носећи гасови у гасној хроматографији су хелијум, азот, аргон, водоник и ваздух. Који од ових наведених гасова ће се користити, одређује се обично у зависности којим ће се детектором радити при анализи, на пример детектор са јонизационим пражњењем () обавезно користи хелијум као носећи гас. Такође и приликом анализе гасних узорака врста носећег гаса је од значаја, ако се на пример анализира аргонска смеша, пожељан је аргон као носећи гас из простог разлога што се аргон уопште неће посебно појавити на детектору а самим тим ни на хроматограму. Исто тако безбедност и доступност се морају узети у обзир, водоник је по природи запаљив и експлозиван али се ипак користи због немогућности набавке хелијума високе чистоће. (Видети: Добијање хелијума.)
Типично, чистоћа носећег гаса који се користи у гасној хроматографији је 99.995% или чак и више и она се одређује од врсте детектора који се користи приликом анализе. Трговачки називи за носеће гасове различите чистоће су (), (), () и ().
Проток носећег гаса утиче на анализу у истом обиму као и варијација температуре. Бржи проток омогућава и бржу анализу али и смањује могућност потпуног раздвајања компоненти смеше (краће задржавање појединих компоненти на теоретским подовима колоне). Проток носећег гаса се зато оптимизује заједно са оптимизацијом дужине колоне и температурним режимом.
Гасни хроматографи произведени пре 1990. нису имали другу могућност мерења и контроле протока носећег гаса до обичним повећањем и смањењем притиска и проток се мерио на излазу колоне са електронским мерачем протока () или једноставним мерачем протока помоћу мехурова (), што је доста непрецизно и са том врстом контроле није постојала могућност контроле варијације притиска у току анализе.
Модерни гасни хроматографи имају могућност електронског мерења и контроле протока носећег гаса, овим је омогућено да се притисак и брзина протока носећег гаса може веома прецизно контролисати и током трајања саме анализе, што даје већу ефикасност методи.
Начин убацивања узорка и инјекторска техника зависе од самог узорка који може бити течан, гасни, растворен или у чврстој форми. У неким од ових случајева потребно је отпарити растварач или другим речима прочистити узорак. У неким случајевима ако су услови анализе познати и понашање узорка такође је познато, узорак се може убацити иако је заједно са растварачем, непрочишћен, онда се узорак убацује преко такозваних cold-on-column() инјектора. Ако се узорак претходно мора припремити или прочистити онда се најчешће користи () инјектор. Гасни узорци се инјектују преко вентила скретница што је најраспрострањенији начин инјектовања у гасној хроматографији.
Гасно хроматографска анализа почиње уласком узорка у колону колону. Развој капиларне гасне хроматографије и он је, због многобројних проблема са стандарним инјекторима које су биле дизајниране за пуњене колоне, довео до нових правила и дизајна који су специфицирани за капиларне колоне. Инјекторски систем, за капиларне колоне у гасној хроматографији, мора испунити два основна услова:
Ако се ова два основна услова не испуне, долази до смањења ефикасности колоне. Генерално, запремина која се инјектује, , и запремина детекторске јединице, , треба да буду у односу 1/10 од запремине коју заузима компонента испитиваног узорка при изласку из колоне.
Неке од основних услова правилне инјекторске технике:
У гаснохроматографској анализи аналитичка колона је смештена у пећ, где се електронски врши прецизна контрола температуре. Када се говори о температури колоне, у ствари, технички, то се односи на температуру пећи.
Брзина са којом узорак пролази кроз колону је директно пропорционална температури колоне, што год је температура већа то је и време проласка компоненти узорка брже. Али, такође треба знати да што је већа брзина проласка узорка преко стационарне фазе у колони то је и раздвајање слабије.
Због ове појаве, већа брзина-лошије раздвајање, селектована температуре је у ствари компромис дужине анализе и нивоа раздвајања компоненти.
Метода у којој се температура држи стабилном током трајања целе анализе се зове изотермна метода. Већина метода данас, због бољих електронских решења, имају такозвану температурну контролу, са којом се повећава температура током трајања анализе и тиме скраћује укупно време. Ове методе се називају температурно програмске методе.
Температурно програмске методе омогућавају компонентама које брже излазе да се јасно раздвоје а тежим компонентама које заостају у колони да брже изађу из ње и самим тим цела анализа траје краће што је и један од циљева модерних техника.
Квалитативна анализа:
Квантитативна анализа:
У комбинацији користи се компјутерски софтвер који интегрише детекторске сигнале и упоређује их са базом података који су му раније унети у меморију.
Супстанце које се анализирају морају имати тачку кључања испод 300 °C, то јест да су стабилни до те температуре и оне се могу квантитативно мерити, такође не смеју садржавати соли појединих једињења и јоне. Обично се резултати могу добити одмах али сигурније је када се испитивана супстанца упореди са постојећим стандардом.
У примењеној гасној хроматографији се могу користити различити температурни програми и тиме повећа линија раздвајања пикова и олакша њихова идентификација, ово је веома практично код рада са супстанцама које имају сличне особине и са униформном температуром их је тешко или немогуће раздвојити.
Гасна хроматографија је, као аналитичка метода, веома практична за рад Хемијском инжењерству, хемијској индустрији, пољопривреди, ветеринарству, шумарству и осталим индустријским гранама. Пример за то је контрола улазних сировина и излазних продуката хемијске индустрије, мерење токсичних супстанци у земљи, води или ваздиху. Гасна хроматографија је толико прецизна да може мерити пикомол неке компоненте у 1 течног узорка или ије (), у концентрованим гасним узорцима.
Основни услови које треба испунити да би се добило оптимално раздвајање компоненти су што већа разлика у задржавању састојака на стационарној фази и што уже зоне, које компоненте у колони заузимају.
Промена поларности стационарне фазе утиче само на релативно задржавање, а величина зрнаца чврстог носача на ширину зона састојака-компоненти узорка. Промена количине стационарне фазе утицаче и на задржавање компоненти и на ширину њихових зона. Пример двојаког утицаја је утицај количине текуће фазе и температуре колоне.
Као мера за ширење зоне састојака, компоненти, у хроматографској колони узима се ширина пика на хроматограму.
Где је
Где је варијација колоне :
где је
Зависност висине је еквивалентна теоретском тавану () и фактора који утичу на тај однос:
Где је:
Где је:
Минимум кривуље, на слици, представља оптималну брзину гаса носача уз коју колона има максималну ефикасност и минималну ширину пика, оптимална брзина протока ().
Код брзине се губи око 20% од максималне могуће ефикасности колоне а време анализе се смањује на половину услед двоструко веће брзине гаса носача, оптимална практична брзина протока ().
Ако се дужина колоне повећа за 20%, време анализе уз смањиће се се на ⅝ времена потребног при раду са , а колона ће имати исту ефикасност. Код ових брзина висина еквивалентна теоретском тавану зависи само од отпора преноса масе. Из овог разлога се препоручује у пракси радити са вредностима .
Мера за делотворност колоне је број теоретских тавана ()
Ефективни број тавана
Где је редуковано време задржавањакоје је добијено као разлика времена задржавања састојака () времена елуирања инертног састојка ()
Где је
Већи садржај течне фазе у колони захтева мањи број теоретскох тавана.[6].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.