je proto-onkogenska tirozinska kinaza. su otkrili Mihael Bišop i Harold Varmus. Za ovo otkriće im je dodeljena Nobelova nagrada za fiziologiju ili medicinu 1989. godine.[1] Ova kinaza pripada familiji nespecifičnih proteinskih tirozinskih kinaza koja se naziva familijom kinaza. Otkriće porodice proteina je imalo presudnu ulogu u modernom shvatanju rak kao bolesti u kojoj se inače zdrava ćelijska signalizacija pokvari.
Кратке чињенице sarkoma viralni onkogeni homolog (avijarni), Dostupne strukture ...
sarkoma viralni onkogeni homolog (avijarni) |
---|
|
|
1a07, 1a08, 1a09, 1a1a, 1a1b, 1a1c, 1a1e, 1bkl, 1bkm, 1f1w, 1f2f, 1fmk, 1hcs, 1hct, 1is0, 1kc2, 1ksw, 1nlo, 1nlp, 1nzl, 1nzv, 1o41, 1o42, 1o43, 1o44, 1o45, 1o46, 1o47, 1o48, 1o49, 1o4a, 1o4b, 1o4c, 1o4d, 1o4e, 1o4f, 1o4g, 1o4h, 1o4i, 1o4j, 1o4k, 1o4l, 1o4m, 1o4n, 1o4o, 1o4p, 1o4q, 1o4r, 1p13, 1prl, 1prm, 1qwe, 1qwf, 1rlp, 1rlq, 1sha, 1shb, 1shd, 1skj, 1spr, 1sps, 1srl, 1srm, 1y57, 1yi6, 1yoj, 1yol, 1yom, 2bdf, 2bdj, 2h8h, 2hwo, 2hwp, 2oiq, 2ptk, 2src |
|
Simboli |
SRC; ASV; SRC1; c-SRC; p60-Src |
---|
Vanjski ID |
OMIM: 190090 MGI: 98397 HomoloGene: 21120 GeneCards: SRC Gene |
---|
|
|
|
|
podaci |
|
Vrsta |
Čovek |
Miš |
---|
Entrez |
6714 |
20779 |
---|
Ensembl |
ENSG00000197122 |
ENSMUSG00000027646 |
---|
UniProt |
P12931 |
Q2M4I4 |
---|
RefSeq (mRNA) |
NM_005417 |
NM_001025395 |
---|
RefSeq (protein) |
NP_005408 |
NP_001020566 |
---|
Lokacija (UCSC) |
Chr 20: 35.41 - 35.47 Mb |
Chr 2: 157.12 - 157.16 Mb |
---|
PubMed pretraga |
|
|
---|
Затвори
Ovaj gen je sličan sa genom sarkoma virusa. Ovaj proto-onkogen može da igra ulogu u regulisanju embrionalnog razvoja i rasta ćelija. Proteinska kinaza koju ovaj gen kodira se može inhibirati fosforilacijom kinazom. Mutacije ovog gena mogu da učestvuju u malignom razvoju raka debelog creva. Dve transkriptne varijante koje kodiraju isti protein su nađene za ovaj gen.[2]
Za gen je bilo pokazano da interaguje sa ,[3][4] ,[5] ,[6] Jedreni translokator arilnog ugljovodoničnog receptora,[7] Aryl hydrocarbon receptor,[7] ,[8] ,[9][10] receptor ,[11][12] Androgenski receptor,[13][14][15] Proteinska kinaza Mζ,[16] ,[17] ,[8][18] Beta-3 adrenergički receptor,[19] Kinaza beta adrenergičkog receptora,[8] Receptor epidermalnog faktora rasta,[9][20][21] ,[22][23][24][25][26][27] ,[28] ,[29] Distroglikan,[30] Estrogenski receptor alfa,[13][31][32][33] Estrogenski receptor beta,[13][33] ,[34] ,[35][36][37][38][39] DDEF1,[40] ,[41][42] ,[20][43][44] ,[45][22][46][47][48][24] SHB,[49] ,[50] Faktor responsa seruma,[51] ,[52][53][54][55] Receptor retinoiske kiseline alfa,[32][56] Protein Viskot-Oldrić sindroma,[57][58] RICS,[59] proteinski activator 1,[60][61] [62] i .[63]
Ma, Juan; Zhang Guang-Yi (2003). „Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia”. Neurosci. Lett. Ireland. 348 (3): 185—9. ISSN 0304-3940. PMID 12932824. doi:10.1016/S0304-3940(03)00784-5.
Takagi, N; . (1999). „The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains”. J. Cereb. Blood Flow Metab. UNITED STATES. 19 (8): 880—8. ISSN 0271-678X. PMID 10458595. doi:10.1097/00004647-199908000-00007.
Cleghon, V; Morrison D K (1994). „Raf-1 interacts with Fyn and Src in a non-phosphotyrosine-dependent manner”. J. Biol. Chem. UNITED STATES. 269 (26): 17749—55. ISSN 0021-9258. PMID 7517401.
Bourguignon, L Y; . (2001). „CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration”. J. Biol. Chem. United States. 276 (10): 7327—36. ISSN 0021-9258. PMID 11084024. doi:10.1074/jbc.M006498200.
Wan, Kah Fei; . (2003). „The inhibitory gamma subunit of the type 6 retinal cGMP phosphodiesterase functions to link c-Src and G-protein-coupled receptor kinase 2 in a signaling unit that regulates p42/p44 mitogen-activated protein kinase by epidermal growth factor”. J. Biol. Chem. United States. 278 (20): 18658—63. ISSN 0021-9258. PMID 12624098. doi:10.1074/jbc.M212103200.
Zisch, A H (2000). „Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses”. Oncogene. ENGLAND. 19 (2): 177—87. ISSN 0950-9232. PMID 10644995. doi:10.1038/sj.onc.1203304.
Keely, S J; . (2000). „Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src)”. J. Biol. Chem. UNITED STATES. 275 (17): 12619—25. ISSN 0021-9258. PMID 10777553. doi:10.1074/jbc.275.17.12619.
Hecker, Timothy P; . (2002). „Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples”. Cancer Res. United States. 62 (9): 2699—707. ISSN 0008-5472. PMID 11980671.
Sotgia, F; . (2001). „Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins”. Biochemistry. United States. 40 (48): 14585—92. ISSN 0006-2960. PMID 11724572. doi:10.1021/bi011247r.
Li, Y; . (2001). „The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin”. J. Biol. Chem. United States. 276 (9): 6061—4. ISSN 0021-9258. PMID 11152665. doi:10.1074/jbc.C000754200.
Li, Y; . (2001). „The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin”. J. Biol. Chem. United States. 276 (38): 35239—42. ISSN 0021-9258. PMID 11483589. doi:10.1074/jbc.C100359200.
Kumar, S; . (1999). „Negative regulation of PYK2/related adhesion focal tyrosine kinase signal transduction by hematopoietic tyrosine phosphatase SHPTP1”. J. Biol. Chem. UNITED STATES. 274 (43): 30657—63. ISSN 0021-9258. PMID 10521452. doi:10.1074/jbc.274.43.30657.
Donaldson, J C; . (2000). „Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells”. Exp. Cell Res. UNITED STATES. 256 (1): 168—78. ISSN 0014-4827. PMID 10739664. doi:10.1006/excr.2000.4822.
Karlsson, T; . (1995). „Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins”. Oncogene. ENGLAND. 10 (8): 1475—83. ISSN 0950-9232. PMID 7537362.
Kim, H J; . (1998). „Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations”. J. Biol. Chem. UNITED STATES. 273 (44): 28564—7. ISSN 0021-9258. PMID 9786846. doi:10.1074/jbc.273.44.28564.
Lee, S K; . (1999). „A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo”. J. Biol. Chem. UNITED STATES. 274 (48): 34283—93. ISSN 0021-9258. PMID 10567404. doi:10.1074/jbc.274.48.34283.
Lee, S K; . (2000). „Activating protein-1, nuclear factor-kappaB, and serum response factor as novel target molecules of the cancer-amplified transcription coactivator ASC-2”. Mol. Endocrinol. UNITED STATES. 14 (6): 915—25. ISSN 0888-8809. PMID 10847592. doi:10.1210/me.14.6.915.
Lee, S K; . (2001). „Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2”. Mol. Endocrinol. United States. 15 (2): 241—54. ISSN 0888-8809. PMID 11158331. doi:10.1210/me.15.2.241.
Finan, P M; . (1996). „Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains”. J. Biol. Chem. UNITED STATES. 271 (42): 26291—5. ISSN 0021-9258. PMID 8824280. doi:10.1074/jbc.271.42.26291.
- Frame MC, Fincham VJ, Carragher NO, Wyke JA (2002). „v-Src's hold over actin and cell adhesions”. Nat. Rev. Mol. Cell Biol. 3 (4): 233—45. PMID 11994743. doi:10.1038/nrm779.
- Benaim G, Villalobo A (2002). „Phosphorylation of calmodulin. Functional implications”. Eur. J. Biochem. 269 (15): 3619—31. PMID 12153558. doi:10.1046/j.1432-1033.2002.03038.x.
- Simeonova PP, Luster MI (2003). „Arsenic carcinogenicity: relevance of c-Src activation”. Mol. Cell. Biochem. 234-235 (1-2): 277—82. PMID 12162444. doi:10.1023/A:1015971118012.
- Leu TH, Maa MC (2004). „Functional implication of the interaction between EGF receptor and c-Src”. Front. Biosci. 8: s28—38. PMID 12456372. doi:10.2741/980.
- AL, Greenway; Holloway G; DA, McPhee; . (2004). „HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication”. J. Biosci. 28 (3): 323—35. PMID 12734410. doi:10.1007/BF02970151.
- Dehm SM, Bonham K (2004). „SRC gene expression in human cancer: the role of transcriptional activation”. Biochem. Cell Biol. 82 (2): 263—74. PMID 15060621. doi:10.1139/o03-077.
- M, Tolstrup; Ostergaard L; AL, Laursen; . (2004). „HIV/SIV escape from immune surveillance: focus on Nef”. Curr. HIV Res. 2 (2): 141—51. PMID 15078178. doi:10.2174/1570162043484924.
- Joseph AM, Kumar M, Mitra D (2005). „Nef: "necessary and enforcing factor" in HIV infection”. Curr. HIV Res. 3 (1): 87—94. PMID 15638726. doi:10.2174/1570162052773013.
- R, Roskoski (2005). „Src kinase regulation by phosphorylation and dephosphorylation”. Biochem. Biophys. Res. Commun. 331 (1): 1—14. PMID 15845350. doi:10.1016/j.bbrc.2005.03.012.
- Alper O, Bowden ET (2005). „Novel insights into c-Src”. Curr. Pharm. Des. 11 (9): 1119—30. PMID 15853660. doi:10.2174/1381612053507576.