From Wikipedia, the free encyclopedia
Geometria (z gréckych slov Geo = zem a metro = miera) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými Grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa zaoberal vzťahmi v priestore. Najstaršie známky geometrie sa dajú sledovať už v starovekom Egypte. Rindský papyrus popisuje zarážajúco presný spôsob výpočtu aproximácie Ludolfovho čísla, s chybou menšou ako jedna stotina. Rindský papyrus tiež popisuje jeden z prvých pokusov kvadratúry kruhu, ako aj istú analógiu kotangensu.
Ľudia zo skúsenosti alebo možno intuitívne charakterizujú priestor tými istými základnými vlastnosťami, ktoré sú zachytené axiómami geometrie. Z týchto axiómov a definícií bodu, priamky, krivky, povrchov a telies sa potom odvádzajú vety, ktoré tvoria teóriu geometrie.
Geometria bola jedna z prvých disciplín matematiky vôbec, čo je dané jej možnosťami okamžitej praktickej aplikácie. Takisto je to prvá disciplína, ktorá bola postavená na axiomatickej báze, ktorú rozpracoval Euklides. Grékov zaujímalo veľa otázok o konštrukciách pravítkom a kružidlom. Na ďalší významný pokrok v geometrii si však ľudstvo muselo počkať jedno tisícročie. Týmto pokrokom bola analytická geometria, v ktorej definujeme súradnicové sústavy a body reprezentujeme usporiadanými n-ticami. Táto algebrická reprezentácia umožnila doslova fascinujúce veci a okrem iného dovoľuje skonštruovať celkom nové geometrie odlišné od štandardnej euklidovskej.
Ústredný pojem v geometrii je kongruencia. V euklidovskej geometrii hovoríme, že dva útvary sú kongruentné, ak sa dá zobraziť jeden na druhý pomocou postupnosti symetrií, otočení a posunutí.
Iné geometrie môžeme skonštruovať zvolením nového základaného vektorového priestoru (euklidovská geometria používa reálny euklidovský vektorový priestor so štandardnou euklidovskou metrikou) alebo zvolením novej grupy transformácií (euklidovská geometria používa nehomogénne ortogonálne transformácie). Druhý pohľad sa nazýva Erlangenský program. Vo všeobecnosti zrejme platí, že čím viac kongruencií máme, tým menej invariantov bude existovať. Napríklad v afinnej geometrii sú povolené všetky lineárne transformácie a tak vzdialenosti a uhly už nie sú invarianty (ale kolinearita je).
Diskrétna forma geometria spadá pod Pickovu vetu. Pickova veta používa bodkovaný papier a dáva vzorec na výpočet obsahu zložitých útvarov.[1][2][3][4][5][6]
Geometria je podľa Kleina teória invariantov určitej grupy transformácií (zobrazení).
Táles, ktorý prvý navštívil Egypt, priniesol do Grécka geometriu.[7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.