From Wikipedia, the free encyclopedia
Bázy (takisto dusíkaté bázy[1], dusíkové bázy[2], dusíkové zásady,[2] N-zásady[2], nukleové bázy či bázy nukleových kyselín) sú zásadité heterocyklické zložky nukleových kyselín. Bázy sú súčasťou nukleozidov, ktoré sú súčasťou nukleotidov. Nukleotidy tvoria monomérne stavebné kamene nukleových kyselín. Majú schopnosť tvoriť páry a skladať sa na seba, vďaka čomu sú schopné tvoriť dlhé helikálne štruktúry, ako sú ribonukleová (RNA) a deoxyribonukleová kyselina (DNA). Dusíkaté bázy tvoria kód na zápis genetickej informácie. Komplementárne párovanie potom umožňuje túto informáciu realizovať pri procesoch replikácie, transkripcie a translácie.
Existuje päť primárnych (kanonických) dusíkatých báz - adenín (A), cytozín (C), guanín (G), tymín (T) a uracil (U). Tvoria základné jednotky genetického kódu. Bázy A, C, G a T sa nachádzajú v DNA a bázy A, C, G a U sa nachádzajú v RNA. Tymín a uracil sú si veľmi podobné a líšia sa len metylovou skupinou na uhlíku C5 na ich šesťčlennom heterocyklickom kruhu.[3] Niektoré vírusy majú aminoadenín (Z) namiesto adenínu. Aminoadenín ma amínovú skupinu naviac a tvorí pevnejšiu väzbu na tymín.[4]
Dusíkaté bázy ako sú adenín, guanín, hypoxantín, xantín, purín, 2,6-diaminopurín a 6,8-diaminopurín mohli vzniknúť vo vesmíre a zároveň i na Zemi.[5][6][7]
Označenia "báza " vychádza z acidobázických vlastností týchto zlúčenín. Tieto vlastnosti však nie sú zvlášť dôležité pre pochopenie ich biologickej funkcie.
Adenín a guanín majú bicyklickú štruktúru, ktorej základom je purín, preto sa nazývajú i purínové bázy. Purínové bázy majú charakteristickú aminoskupinu (NH2-), ktorá je prítomná na C6 uhlíku adenínu a C2 uhlíku guanínu.[8] Podobným spôsobom sú cytozín, tymín a uracil odvodené od pyrimidínu, takže sa označujú ako pyrimidínové bázy.
Každý pár báz v dvojzávitnici DNA sa skladá z jedného purínu a jedného pyrimidínu: buď sa jedná o pár A-T alebo o pár C-G. Tieto báze sú takzvane komplementárne a spájajú dva reťazce dvojzávitnice. Niekedy sa prirovnávajú k priečkam rebríku. Párovanie purínov s pyrimidínmi môže do istej miery vychádzať z rozmerových obmedzení, pretože táto kombinácia (jeden purín a jeden pyrimidín) zaručuje usporiadanie s konštantnou šírkou, čo umožňuje tvorbu pravidelného helixu. Medzi jednotlivými pármi báz sú vodíkové väzby tvorené amino a karbonylovými skupinami komplementárnych báz, ktoré držia páry A-T (dve vodíkové väzby) a C-G (tri vodíkové väzby) pohromade.
Na okrajoch štruktúry nukleových kyselín vystupujú molekuly fosfátu, ktoré spájajú dve kruhové molekuly cukrov susediacich nukleotidov do dlhého reťazca, čím vzniká dlhá biomolekula. Tento reťazec tvorený fosfátom a cukrom (ribózou alebo deoxyribózou) tvorí kostru jedného reťazca jedno- alebo dvojzávitnice. Tieto reťazce sa označujú i ako cukor-fosfátová kostra.[9] V dvojzávitnicovej DNA sú jednotlivé reťazce orientované opačnými smermi, čo umožňuje párovanie báz vďaka ich komplementarite, čo je nutné pre replikáciu a transkripciu informácie kódovanej v DNA.
DNA a RNA obsahujú mnoho ďalších báz, ktoré sú modifikované po tom, čo vznikne reťazec nukleovej kyseliny. V DNA je najčastejšou modifikovanou bázou 5-metylcytozín (m5C). V RNA existuje mnoho modifikovaných báz, vrátane tých, ktoré sa vyskytujú v nukleozidoch pseudouridíne (Ψ), dihydrouridíne (D), inozíne (I) a 7-metylguanozíne (m7G).[10]
Hypoxantín a xantín sú dve z mnohých báz, ktoré vznikajú v prítomnosti mutagénov. Oba vznikajú deamináciou (náhradou amino skupiny za karbonylovú skupinu). Hypoxantín vzniká z adenínu, zatiaľ čo xantín vzniká z guanínu.[11] Podobným spôsobom vzniká uracil z cytozínu. Hypoxantín i xantín sú však bežnou súčasťou purínového metabolizmu.
Nižšie sú zobrazené príklady modifikovaných purínov:
Báza | Hypoxantín |
Xantín |
7-Metylguanín |
Nukleozid | Inozín I |
Xantozín X |
7-Metylguanozín m7G |
Nižšie sú zobrazené príklady modifikovaných pyrimidínov:
Báza | 5,6-Dihydrouracil |
5-Metylcytozín |
5-Hydroxymetylcytozín |
Nukleozid | Dihydrouridín D |
5-Metylcytidín m5C |
Existuje veľké množstvo analógov dusíkatých báz. Najčastejšie sa používajú ako fluorescentné sondy, buď priamo alebo nepriamo, napríklad aminoalylnukleotidy, ktoré sa používajú na označenie cRNA alebo cDNA v mikrodoštičkách. Niekoľko výskumných skupín pracuje na alternatívnych "extra" bázach na rozšírenie genetického kódu, napríklad izoguaníne a izocytozíne či fluorescentných 2-amino-6-(2-tienyl)puríne a pyrol-2-karbaldehyde.[12][13]
V medicíne sa používa niekoľko analógov nukleozidov na liečbu proti rakovine a vírusom. Virálna polymeráza zabudováva tieto zlúčeniny s nekanonickými bázami. Tie sa potom aktivujú v bunke konverziou na nukleotidy - podávajú sa ako nukleozidy, keďže nukleotidy nemôžu jednoducho prestúpiť bunkovou membránou, takže je nutné ich aktivovať.[chýba zdroj] V roku 2014 bol ohlásený semi-syntetický organizmus využívajúci nový pár báz.[14]
Pre pochopenie vzniku života je nutné poznanie chemických dráh, ktoré umožnili vznik kľúčových stavebných kameňov života pri možných prebiotických podmienkach. Podľa hypotézy RNA sveta boli prítomné voľne plávajúce ribonukleotidy v prebiotickej polievke. Tak komplexné molekuly, ako je RNA, museli vzniknúť z menších molekúl, ktorých reaktivita je daná fyzikálne-chemickými procesmi. RNA sa skladá z purínových a pyrimidínových nukleotidov, ktoré sú oboje nutné pre spoľahlivý prenos informácii a teda prirodzený výber a evolúciu. Nam a kolektív[15] ukázali priamu kondenzáciu nukleobáz s ribózou za vzniku ribonukleozidov vo vodných mikrokvapkách, kľúčový krok pre tvorbu RNA. Becker a kolektív dosiahli podobné výsledky.[16]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.