Hexacontagon

polygon with 60 sides From Wikipedia, the free encyclopedia

Hexacontagon
Remove ads

A hexacontagon or 60-gon is a shape with 60 sides and 60 corners.[1][2]

Quick facts Regular hexacontagon, Type ...

Regular hexacontagon

A regular hexacontagon is represented by Schläfli symbol {60} and also can be constructed as a truncated triacontagon, t{30}, or a twice-truncated pentadecagon, tt{15}. A truncated hexacontagon, t{60}, is a 120-gon, {120}.

One interior angle in a regular hexacontagon is 174°, meaning that one exterior angle would be 6°.

Area

The area of a regular hexacontagon is (with t = edge length)

and its inradius is

The circumradius of a regular hexacontagon is

This means that the trigonometric functions of π/60 can be expressed in radicals.

Constructible

Since 60 = 22 × 3 × 5, a regular hexacontagon is constructible using a compass and straightedge.[3] As a truncated triacontagon, it can be constructed by an edge-bisection of a regular triacontagon.

Remove ads

Dissection

Thumb
60-gon with 1740 rhombs

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular hexacontagon, m=30, and it can be divided into 435: 15 squares and 14 sets of 30 rhombs. This decomposition is based on a Petrie polygon projection of a 30-cube.

Examples
Thumb
Thumb
Thumb
Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads