concept that pairs of particles exist that have equal mass, but opposite sign for properties such as charge, lepton and baryon number From Wikipedia, the free encyclopedia
There is an antiparticle corresponding to most kinds of particle. It has the same mass and opposite electric charge.[1]
Antimatter | |
Overview | |
Annihilation | |
Devices | |
Antiparticles | |
Uses
| |
Bodies
| |
People
|
Even electrically neutral particles, such as the neutron, are not identical to their antiparticle. In the example of the neutron, the 'ordinary' particle is made out of quarks and the antiparticle out of antiquarks.[2]
Particle-antiparticle pairs can annihilate each other if they are in appropriate quantum states. They can also be produced in various processes. These processes are used in particle accelerators to create new particles and to test theories of particle physics. High energy processes in nature can create antiparticles. These are visible in cosmic rays and in certain nuclear reactions. The word antimatter properly refers to (elementary) antiparticles, composite antiparticles made with them (such as antihydrogen) and to larger assemblies of either.
In 1932, soon after the prediction of positrons by Paul Dirac, Carl Anderson found that cosmic-ray collisions produced these particles in a cloud chamber – a particle detector in which moving electrons (or positrons) leave behind trails as they move through the gas.
The antiproton and antineutron were found by Emilio Segrè and Owen Chamberlain in 1955 at the University of California, Berkeley. Since then the antiparticles of many other subatomic particles have been created in particle accelerators. In recent years, complete atoms of antimatter have been assembled out of antiprotons and positrons, collected in electromagnetic traps.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.