Mitogenom-aktivirana proteinska kinaza 1, takođe poznata kao MAPK1, p42MAPK, i ERK2, je enzim koji je kod ljudi kodiran MAPK1 genom.[1]
Kratke činjenice Dostupne strukture, Identifikatori ...
Mitogenom-aktivirana proteinska kinaza 1 |
---|
PDB prikaz baziran na PDB 1erk. |
Dostupne strukture |
---|
1erk, 1gol, 1pme, 1tvo, 1wzy, 2erk, 2fys, 2gph, 2ojg, 2oji, 2ojj, 3erk, 4erk |
Identifikatori |
---|
Simboli | MAPK1; |
---|
Vanjski ID | OMIM: 176948 MGI: 1346858 HomoloGene: 37670 GeneCards: MAPK1 Gene |
---|
|
Pregled RNK izražavanja |
---|
|
|
podaci |
Ortolozi |
---|
Vrsta | Čovek | Miš | |
---|
Entrez | 5594 | 26413 | |
---|
Ensembl | ENSG00000100030 | ENSMUSG00000063358 | |
---|
UniProt | P28482 | Q3UF82 | |
---|
RefSeq (mRNA) | NM_002745 | NM_001038663 | |
---|
RefSeq (protein) | NP_002736 | NP_001033752 | |
---|
Lokacija (UCSC) | Chr 22: 20.45 - 20.55 Mb | Chr 16: 16.9 - 16.96 Mb | |
---|
PubMed pretraga | | | |
Zatvori
Protein kodiran ovim genom je član familije MAP kinaza. Mitogenom-aktivirane proteinske kinaze, su takođe poznate kao ekstracelularnim signalom regulisane kinaze (ERK). One deluju kao tačka integracije višestrukih biohemijskih signala, i učestvuju u širokom varijetetu ćelijskih procesa kao što su proliferacija, diferencijacija, i regulacija transkripcije i razvoja. Prirekvizit aktivacije ove kinaze je njena fosforilisana uzvodnim kinazama. Nakon aktivacije, ova kinaza se translocira u jedro stimulisanih ćelija, gde ona fosforiliše proteine jedra. Dve alternativno splajsovane transkriptne varijante, koje se razlikuju u netranskribovanim regionima, kodiraju isti protein.[2]
Za MAPK1 je bilo pokazano da interaguje sa TSC2,[3] PEA15,[4] DUSP1,[5][6] NEK2,[7] DUSP3,[8] STAT5A,[9][10] MAPK14,[11][12] FHL2,[13] TNIP1,[14] RPS6KA3,[15][16] RPS6KA2,[15][17] MAP2K1,[11][18][19][20][21][22] RPS6KA1,[16][17][23] PTPN7,[24][25] MKNK1,[26] CIITA,[27] TOB1,[28] Fosfatidiletanolamin vezujući protein 1,[19] DUSP22,[29] Myc,[30][31][32] ADAM17,[33] SORBS3,[34] ELK1,[23][35] VAV1,[36][37] HDAC4,[38] MKNK2,[26][39] MAP3K1[40] i UBR5.[23]
Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (February 1992). „Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs”. Biochem. Biophys. Res. Commun. 182 (3): 1416–22. DOI:10.1016/0006-291X(92)91891-S. PMID 1540184.
Ma, Li; Chen Zhenbang, Erdjument-Bromage Hediye, Tempst Paul, Pandolfi Pier Paolo (April 2005). „Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis”. Cell (United States) 121 (2): 179–93. DOI:10.1016/j.cell.2005.02.031. ISSN 0092-8674. PMID 15851026.
Formstecher, E; Ramos J W, Fauquet M, Calderwood D A, Hsieh J C, Canton B, Nguyen X T, Barnier J V, Camonis J, Ginsberg M H, Chneiweiss H (August 2001). „PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase”. Dev. Cell (United States) 1 (2): 239–50. DOI:10.1016/S1534-5807(01)00035-1. ISSN 1534-5807. PMID 11702783.
Slack, D N; Seternes O M, Gabrielsen M, Keyse S M (May 2001). „Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1”. J. Biol. Chem. (United States) 276 (19): 16491–500. DOI:10.1074/jbc.M010966200. ISSN 0021-9258. PMID 11278799.
Calvisi, Diego F; Pinna Federico, Meloni Floriana, Ladu Sara, Pellegrino Rossella, Sini Marcella, Daino Lucia, Simile Maria M, De Miglio Maria R, Virdis Patrizia, Frau Maddalena, Tomasi Maria L, Seddaiu Maria A, Muroni Maria R, Feo Francesco, Pascale Rosa M (June 2008). „Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma”. Cancer Res. (United States) 68 (11): 4192–200. DOI:10.1158/0008-5472.CAN-07-6157. PMID 18519678.
Lou, Yang; Xie Wei, Zhang Dong-Fang, Yao Jian-hui, Luo Zhao-feng, Wang Yu-Zhen, Shi Yun-Yu, Yao Xue-Biao (August 2004). „Nek2A specifies the centrosomal localization of Erk2”. Biochem. Biophys. Res. Commun. (United States) 321 (2): 495–501. DOI:10.1016/j.bbrc.2004.06.171. ISSN 0006-291X. PMID 15358203.
Todd, J L; Tanner K G, Denu J M (May 1999). „Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway”. J. Biol. Chem. (UNITED STATES) 274 (19): 13271–80. DOI:10.1074/jbc.274.19.13271. ISSN 0021-9258. PMID 10224087.
Pircher, T J; Petersen H, Gustafsson J A, Haldosén L A (April 1999). „Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a”. Mol. Endocrinol. (UNITED STATES) 13 (4): 555–65. DOI:10.1210/me.13.4.555. ISSN 0888-8809. PMID 10194762.
Dinerstein-Cali, H; Ferrag F, Kayser C, Kelly P A, Postel-Vinay M (August 2000). „Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins”. Mol. Cell. Endocrinol. (IRELAND) 166 (2): 89–99. DOI:10.1016/S0303-7207(00)00277-X. ISSN 0303-7207. PMID 10996427.
Zhang, Shengliang; Fukushi Masaya, Hashimoto Shinichi, Gao Chongfeng, Huang Lin, Fukuyo Yayoi, Nakajima Takuma, Amagasa Teruo, Enomoto Shoji, Koike Katsuro, Miura Osamu, Yamamoto Naoki, Tsuchida Nobuo (September 2002). „A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling”. Biochem. Biophys. Res. Commun. (United States) 297 (1): 17–23. DOI:10.1016/S0006-291X(02)02086-7. ISSN 0006-291X. PMID 12220502.
Smith, J A; Poteet-Smith C E, Malarkey K, Sturgill T W (January 1999). „Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo”. J. Biol. Chem. (UNITED STATES) 274 (5): 2893–8. DOI:10.1074/jbc.274.5.2893. ISSN 0021-9258. PMID 9915826.
Robinson, Fred L; Whitehurst Angelique W, Raman Malavika, Cobb Melanie H (April 2002). „Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1”. J. Biol. Chem. (United States) 277 (17): 14844–52. DOI:10.1074/jbc.M107776200. ISSN 0021-9258. PMID 11823456.
Xu Be; Stippec S, Robinson F L, Cobb M H (July 2001). „Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking”. J. Biol. Chem. (United States) 276 (28): 26509–15. DOI:10.1074/jbc.M102769200. ISSN 0021-9258. PMID 11352917.
Eblen, Scott T; Kumar N Vinay, Shah Kavita, Henderson Michelle J, Watts Colin K W, Shokat Kevan M, Weber Michael J (April 2003). „Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs”. J. Biol. Chem. (United States) 278 (17): 14926–35. DOI:10.1074/jbc.M300485200. ISSN 0021-9258. PMID 12594221.
Saxena, M; Williams S, Brockdorff J, Gilman J, Mustelin T (April 1999). „Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)”. J. Biol. Chem. (UNITED STATES) 274 (17): 11693–700. DOI:10.1074/jbc.274.17.11693. ISSN 0021-9258. PMID 10206983.
Aoyama, K; Nagata M, Oshima K, Matsuda T, Aoki N (July 2001). „Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain”. J. Biol. Chem. (United States) 276 (29): 27575–83. DOI:10.1074/jbc.M100408200. ISSN 0021-9258. PMID 11346645.
Jin, Zhaohui; Gao Fengqin, Flagg Tammy, Deng Xingming (September 2004). „Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation”. J. Biol. Chem. (United States) 279 (38): 40209–19. DOI:10.1074/jbc.M404056200. ISSN 0021-9258. PMID 15210690.
Mitsushima, Masaru; Suwa Akira, Amachi Teruo, Ueda Kazumitsu, Kioka Noriyuki (August 2004). „Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin”. J. Biol. Chem. (United States) 279 (33): 34570–7. DOI:10.1074/jbc.M402304200. ISSN 0021-9258. PMID 15184391.
Cano, E; Hazzalin C A, Kardalinou E, Buckle R S, Mahadevan L C (November 1995). „Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction”. J. Cell. Sci. (ENGLAND) 108 ( Pt 11): 3599–609. ISSN 0021-9533. PMID 8586671.
Song, J S; Gomez J, Stancato L F, Rivera J (October 1996). „Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex”. J. Biol. Chem. (UNITED STATES) 271 (43): 26962–70. DOI:10.1074/jbc.271.43.26962. ISSN 0021-9258. PMID 8900182.
Lee, I S; Liu Y, Narazaki M, Hibi M, Kishimoto T, Taga T (January 1997). „Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6”. FEBS Lett. (NETHERLANDS) 401 (2-3): 133–7. DOI:10.1016/S0014-5793(96)01456-1. ISSN 0014-5793. PMID 9013873.
- Morishima-Kawashima M, Hasegawa M, Takio K, et al. (1995). „Hyperphosphorylation of tau in PHF.”. Neurobiol. Aging 16 (3): 365–71; discussion 371–80. DOI:10.1016/0197-4580(95)00027-C. PMID 7566346.
- Davis RJ (1996). „Transcriptional regulation by MAP kinases.”. Mol. Reprod. Dev. 42 (4): 459–67. DOI:10.1002/mrd.1080420414. PMID 8607977.
- Peruzzi F, Gordon J, Darbinian N, Amini S (2003). „Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway.”. J. Neurovirol. 8 Suppl 2: 91–6. DOI:10.1080/13550280290167885. PMID 12491158.
- Greenway AL, Holloway G, McPhee DA, et al. (2004). „HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication.”. J. Biosci. 28 (3): 323–35. DOI:10.1007/BF02970151. PMID 12734410.
- Meloche S, Pouysségur J (2007). „The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition.”. Oncogene 26 (22): 3227–39. DOI:10.1038/sj.onc.1210414. PMID 17496918.