Kvantna mehanika je fundamentalna grana teorijske fizike kojom su zamenjene klasična mehanika i klasična elektrodinamika pri opisivanju atomskih i subatomskih pojava. Ona predstavlja teorijsku podlogu mnogih disciplina fizike i hemije kao što su fizika kondenzovane materije, atomska fizika, molekulska fizika, fizička hemija, kvantna hemija, fizika čestica i nuklearna fizika. Zajedno sa Opštom teorijom relativnosti Kvantna mehanika predstavlja jedan od stubova savremene fizike.

Kratke činjenice
Kvantna fizika
Thumb
Kvantna mehanika

Uvod u...
Matematička formulacija...

Fundamentalni koncepti

Dekoherencija · Interferencija
Neodređenost · Isključenje
Teorija transformacije
Ehrenfestov teorem · Mjerenje

Eksperimenti

Eksperiment s dvostrukom pukotinom
Davisson-Germer eksperiment
Stern–Gerlach eksperiment
EPR paradoks · Popperov eksperiment Schrödingerova mačka

Jednadžbe

Schrödingerova jednadžba
Paulijeva jednadžba
Klein-Gordonova jednadžba
Diracova jednadžba

Napredne teorije

Kvantna teorija polja
Kvantna elektrodinamika
Kvantna kromodinamika
Kvantna gravitacija
Feynmanov dijagram

Interpretacije

Kopenhagenska · Kvantna logika
Skrivene varijable · Transakcijska
Mnogo-svjetova · Ansambl
Konzistentne povijesti · Relacijska
Svijest uzrokuje kolaps
Orkestrirana objektivna redukcija

Znanstvenici

Planck · Schrödinger
Heisenberg · Bohr · Pauli
Dirac · Bohm · Born
de Broglie · von Neumann
Einstein · Feynman
Everett · Drugi

Ova kutijica: pogledaj  razgovor  uredi
Zatvori
Thumb
Slika. 1: Talasne funkcije elektrona u vodonikovom atomu. Energija raste nadole: n=1,2,3,... i moment impulsa (ugaoni moment) raste s leva na desno: s, p, d,... Svetlija područja odgovaraju većoj verovatnoći gde bi mogao eksperimentalno nađe elektron.

Uvod

Izraz kvant (od latinskog quantum (množina quanta) = količina, mnoštvo, svota, iznos, deo) odnosi se na diskretne jedinice koje teorija pripisuje izvesnim fizičkim veličinama kao što su energija i moment impulsa (ugaoni moment) atoma kao što je pokazano na slici. Otkriće da talasi mogu da se prostiru kao čestice, u malim energijskim paketima koji se nazivaju kvanti dovelo je do pojave nove grane fizike koja se bavi atomskim i subatomskim sistemima a koju danas nazivamo Kvantna mehanika. Temelje kvantnoj mehanici položili su u prvoj polovini dvadesetog veka Verner Hajzenberg, Maks Plank, Luj de Broj, Nils Bor, Ervin Šredinger, Maks Born, Džon fon Nojman, Pol Dirak, Albert Ajnštajn, Volfgang Pauli i brojni drugi poznati fizičari 20. veka. Neki bazični aspekti kvantne mehanike još uvek se aktivno izučavaju.

Teorija

Postoje brojne matematički ekvivalentne formulacije kvantne mehanike. Jedna od najstarijih i najčešće korišćenih je transformaciona teorija koju je predložio Pol Dirak a koja ujedinjuje i uopštava dve ranije formulacije, matričnu mehaniku (koju je uveo Verner Hajzenberg) [1] i talasnu mehaniku (koju je formulisao Ervin Šredinger).

Primene

Kvantna mehanika uspeva izvanredno uspešno da objasni brojen fizičke pojave u prirodi. Na primer osobine subatomskih čestica od kojih su sačinjeni svi oblici materije mogu biti potpuno objašnjene preko kvantne mehanike. Isto, kombinovanje atoma u stvaranju molekula i viših oblika organizacije materije može se dosledno objasniti primenom kvantne mehanike iz čega je izrasla kvantna hemija, jedna od disciplina fizičke hemije. Relativistička kvantna mehanika, u principu, može da objasni skoro celokupnu hemiju. Drugim rečima, nema pojave u hemiji koja ne može da bude objašnjena kvantnomehaničkom teorijom.

Filozofske posledice

Zbog brojnih rezultata koji protivureče intuiciji kvantna mehanika je od samog zasnivanja inicirala brojne filozofske debate i tumačenja. Protekle su decenije pre nego što su bili prihvaćeni i neki od temelja kvantne mehanike poput Bornovog tumačenja amplitude verovatnoće.

Istorija

Da bi objasnio spektar zračenja koje emituje crno telo Maks Plank je 1900. godine uveo ideju o diskretnoj, dakle, kvantnoj prirodi energije. Da bi objasnio fotoelektrični efekat Ajnštajn je postulirao da se svetlosna energija prenosi u kvantima koji se danas nazivaju fotonima. Ideja da se energija zračenja prenosi u porcijama (kvantima) predstavlja izvanerdno dostignuće jer je time Plankova formula zračenja crnog tela dobila konačno i svoje fizičko objašnjenje. Godine 1913. Bor je objasnio spektar vodonikovog atoma, opet koristeći kvantizaciju ovog puta i ugaonog momenta. Na sličan način je Luj de Broj 1924. godine izložio teoriju o talasima materije tvrdeći da čestice imaju talasnu prirodu, upotpunjujući Ajnštajnovu sliku o čestičnoj prirodi talasa.

Hronologija utemeljivačkih eksperimenata

  • ~ 1805: Tomas Jungov eksperiment sa dvostrukim prorezom kojim je demonstrirana talasna priroda svetlosti.
  • 1896: Anri Bekerelov pronalazak radioaktivnosti.
  • 1897: Džozef Džon Tomsonovo otkriće elektrona i njegovog negativnog naeletrisanja u eksperimentima sa katodnom cevi.
  • 1850-1900: Ispitivanje zračenja crnog tela koje nije moglo da se objasni bez kvantnog koncepta.
  • 1905: Fotoelektrični efekat: Ajnštajnovo objašnjenje efekta (za šta je i dobio Nobelovu nagradu za fiziku) uvođenjem koncepta fotona, čestice svetlosti sa kvantiranom energijom.
  • 1909: Robert Milikenov eksperiment sa kapljicama ulja koji je pokazao da je eletrično naeletrisanje javlja u diskretnim (kvantiranim) porcijama.
  • 1911: Raderfordov ogled sa rasejanjem alfa čestica na zlatnoj foliji kojim je napušten atomski model "pudinga od šljiva" u kojem je sugerisano da su masa i naeletrisanje atoma uniformno raspoređeni po zapremini atoma.
  • 1920: Štern-Gerlahov eksperiment kojim je demonstrirana kvantna priroda spina čestice.
  • 1927: Devison (Clinton Davisson) i Džermer (Lester Germer) pokazuju talasnu prirodu elektrona[2] in the Electron diffraction experiment.
  • 1955: Kovan (Clyde L. Cowan) i Reines (Frederick Reines) potvrđuju postojanje neutrina u neutrinskom eksperimentu.
  • 1961: Jensonov (Claus Jönsson) eksperiment sa rasejanjem elektrona na na dvostrukom prorezu.
  • 1980: Klaus fon Klicingovo (Klaus von Klitzing) otkriće kvantnog Halovog efekta. Kvantna verzija Halovog efekta omogućila je definiciju novog standarda za električni otpor i vrlo precizno nezavisno određivanje vrednosti konstante fine strukture.

Povezano

Beleške

Literatura

Eksterni linkovi

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.