From Wikipedia, the free encyclopedia
Carnotov ciklus je fizički proces od značaja u teoriji termodinamike. Svaki termodinamički sistem postoji u određenom stanju. Kad sistem prođe kroz niz različitih stanja, te se vrati u početno, kaže se da je obavio kružni proces. Tokom kružnog procesa sistem može predati rad okolini, te tako djelovati kao toplinski motor. Carnotov ciklus je kružni proces kojeg je osmislio Nicolas Léonard Sadi Carnot 1824 godine i kasnije proširio Paul Émile Clapeyron 1830-ih i 40-ih godina. Sistem koji radi po Carnotovom kružnom ciklusu je hipotetički Carnotov toplinski motor. Toplinski motor prenosi energiju iz toplijeg (ogrjevnog) spremnik u hladniji (rashladni) spremnik, te pritom dio te energije pretvara u mehanički rad. Ciklus se također može obrnuti. Sistemu se može dovoditi rad izvana, te se on onda ponaša kao toplinska pumpa (dizalica topline). Carnotov ciklus je kružni proces s najvišim stupnjem korisnosti, odnosno najveći dio primljene topline pretvara u rad, te najveći dio rada iskorištava za dizanje topline.
Kada se Carnotov ciklus ponaša kao toplinski motor sastoji se od sljedećih promjena stanja:
Ponašanje Carnotovog motora ili hladnjaka najbolje se opisuje korištenjem dijagrama temperatura – entropija, u kojem je termodinamičko stanje sistema definirano točkom na grafu sa entropijom na apcisi i termodinamičkom temperaturom na ordinati. Za jednostavan sistem sa određenim brojem čestica, bilo koja točka grafa će predstavljati određeno stanje sistema. Termodinamički proces će biti predstavljen krivuljom koja povezuje početno stanje (A) i konačno stanje (B). Površina ispod krivulje će biti:
što je iznos topline prenesen u procesu. Ako proces ide prema višoj entropiji, površina ispod krivulje će biti količina topline koju je sistem primio u tom procesu. Ako proces ide prema nižoj entropiji, biti će iznos odvedene topline. Za svaki kružni proces postojati će gornji i donji dio ciklusa. Za desnokretni proces, površina ispod gornjeg dijela će biti dovedena toplina tokom ciklusa, a površina ispod donjeg dijela toplina odvedena tokom ciklusa. Površina unutar ciklusa će predstavljati njihovu razliku, ali budući da je promjena unutrašnje energije kod kružnog procesa jednaka nuli, znači da će razlika predstavljati količinu rada koji je sistem izvršio. Gledajući sliku 2, matematički, za povrativ proces možemo napisati da je količina rada u jednom ciklusu jednaka:
Budući da je dU totalni diferencijal, integral po zatvorenoj krivulji je nula, slijedi da je površina unutar krivulje u T-S dijagramu jednaka radu koji je od sistema odveden ako se radi o desnokretnom procesu, odnosno radu koji je sistemu doveden ako se radi od ljevokretnom procesu.
Rješenje gornjeg integrala je posebno jednostavno ako se radi o Carnotov ciklusu. Količina energije pretvorena u rad je:
Ukupna količina topline prenesena između ogrjevnog spremnika i sistema će biti:
i ukupna količina topline prenesena između sistema i rashladnog spremnika:
Stupanj korisnosti je definiran:
gdje
Stupanj korisnosti ima smisla za toplinske motore, budući da je omjer mehaničkog rada i topline dovedene iz ogrjevnog spremnika.
Iz gornjeg dijagrama se može vidjeti da niti jedan kružni proces koji radi između temperatura and ne može premašiti stupanj korisnosti Carnotovog ciklusa.
Carnotov teorem kaže: Niti jedan stroj koji radi između dva toplinska spremnika ne može biti učinkovitiji od Carnotova stroja između tih istih spremnika. Stoga jednadžba 3 daje maksimalni mogući stupanj djelovanja za bilo koji motor koji radi između tih temperatura. Logična posljedica Carnotovog teorema je: Svi povrativi strojevi koji rade između istih toplinskih spremnika imaju jednaki stupanj korisnosti. Ako desnu stranu jednadžbe napišemo malo drugačije, vidimo da je teoretski maksimalan stupanj korisnosti jednak razlici temperatura ogrjevnog i rashladnog spremnika podijeljenom s temperaturom ogrjevnog spremnika. Termodinamička temperatura se dobije ako temperaturi u stupnjevima Celsiusa dodamo 273,15. Iz formule se vidi zanimljiva činjenica. Snižavanje temperature rashladnog spremnika će imati veći utjecaj na maksimalni stupanj djelovanja nego povišenje temperature ogrjevnog spremnika za isti iznos. U stvarnom svijetu to je teško ostvariti, budući da je rashladni spremnik najčešće okoliš.
Carnot je uvidio da u stvarnosti nije moguće napraviti termodinamički povrativ motor, tako da realni toplinski motori imaju manji stupanj korisnosti od one u jednadžbi 3. Unatoč tome, jednadžba 3 je jako važna jednadžba za određivanje maksimalnog stupnja korisnosti koji se može ostvariti između zadanih toplinskih spremnika.
Iako je Carnotov ciklus idealizacija, izraz za Carnotov stupanj korisnosti je svejedno jako koristan. Temperature ,
su prosječne temperature pri kojima se toplina dovodi odnosno odvodi. U jednadžbi (3) tako možemo zamjeniti TH i TC sa <TH> i<TC>
Za Carnotov ciklus ili njegov ekvivalent <TH> je najviša moguća temperatura, a <TC> najniža. Za cikluse s manjim stupnjem korisnosti <TH> će biti niža od TH i <TC> će biti viša od TC. Ovo može pomoći pri razumijevanju zašto, primjerice pregrijač ili regenerator može poboljšati stupanj korisnosti.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.