используется для снижения затрат на обогрев здания Из Википедии, свободной энциклопедии
Теплоизоляция («тепловая изоляция») — элементы конструкции, уменьшающие процесс теплопередачи и выполняющие роль основного термического сопротивления в конструкции. Термин также может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.
Теплоизоляция применяется для уменьшения теплопередачи всюду, где необходимо поддерживать заданную температуру, например:
В строительстве теплоизоляция применяется для внутреннего и внешнего изолирования наружных стен зданий, кровель, полов и т. д. Благодаря этому снижается расход энергии на отопление или охлаждение, кондиционирование.
В производстве одежды и обуви. Благодаря теплоизолирующим свойствам одежды человек может без активного движения долгое время пребывать на открытом воздухе в сильный холод или в холодной воде.
В корпусах или ограждающих конструкциях холодильного оборудования, печей. Благодаря теплоизоляции возможно значительно снизить затраты энергии на поддержание требуемой температуры внутри.
Трубопроводы теплотрасс окружают теплоизоляцией для уменьшения охлаждения или нагрева передаваемого теплоносителя. Защищают от коррозии. Теплоизоляция обладает пароизолирующими (не всегда) и шумозащитными свойствами.
Изоляция трубопроводной арматуры, где применяются съёмные теплоизоляционные конструкции.
Классификация по принципу нормирования
Строительная тепловая изоляция — тепловая изоляция ограждающих конструкций (стен, полов, крыш, межэтажное перекрытие и т. д.);
Техническая тепловая изоляция — тепловая изоляция оборудования и трубопроводов. Основной документ, регламентирующий применение технической тепловой изоляции на территории РФ — Свод правил — СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов»;
Специальная тепловая изоляция — экранно-вакуумная теплоизоляция[англ.], отражающая тепловая изоляция и т. д.
Классификация по ГОСТ 16381-77 «Материалы и изделия строительные теплоизоляционные»
Материалы и изделия подразделяются по следующим основным признакам:
По виду основного исходного сырья — неорганические, органические;
По структуре — волокнистые, ячеистые, зернистые (сыпучие);
По форме — рыхлые (вата, перлит и др.), плоские (плиты, маты, войлок и др.), фасонные (цилиндры, полуцилиндры, сегменты и др.), шнуровые.
По возгораемости (горючести) — несгораемые, трудносгораемые, сгораемые[1].
На практике по виду исходного сырья теплоизоляционные материалы принято делить на три вида:
Органические — получаемые с использованием органических веществ. Это, прежде всего, разнообразные полимеры (например, пенополистирол, вспененный полиэтилен (НПЭ, ППЭ) и изделия на его основе (в том числе отражающая теплоизоляция). Такие теплоизоляционные материалы изготавливают с объёмной массой от 10 до 100 кг/м3. Главный их недостаток — низкая огнестойкость, поэтому их применяют обычно при температурах не выше 90°C, а также при дополнительной конструктивной защите негорючими материалами (штукатурные фасады, трехслойные панели, стены с облицовкой, облицовки с ГКЛ и т. п.). Также в качестве органических изолирующих материалов используют переработанную неделовую древесину и отходы деревообработки (древесно-волокнистые плиты, ДВП, и древесностружечные плиты, ДСП), целлюлозу в виде макулатурной бумаги (утеплитель эковата), сельскохозяйственные отходы (соломит, камышит и др.), торф (торфоплиты) и т. д. Эти теплоизоляционные материалы, как правило, отличаются низкой водо-, биостойкостью, а также подвержены разложению и используются в строительстве реже.
Неорганические — минеральная вата и изделия из неё (например, минераловатные плиты), монолитный пенобетон и ячеистый бетон (газобетон и газосиликат), пеностекло, стеклянное волокно, изделия из вспученного перлита, вермикулита, сотопласты и др. Изделия из минеральной ваты получают переработкой расплавов горных пород или металлургических шлаков в стекловидное волокно. Объёмная масса изделий из минеральной ваты 35—350 кг/м3. Теплопроводность минеральной ваты находится в диапазонах 0,035-0,040 Вт/м*К и сильно зависит от плотности материала. В процессе эксплуатации происходит увеличение теплопроводности в среднем на 50% за 3 года вследствие проникновения влаги. Паропроницаемость (υ-фактор сопротивления диффузии водяного пара) равна 1 при отсутствии пароизоляционного слоя. Так же при площади отверстий в пароизоляционном слое более 0,2 мм2 на м2. Характерная особенность — низкие прочностные характеристики и повышенное водопоглощение, поэтому применение данных материалов ограничено и требует специальных методик установки. При производстве современных теплоизоляционных минераловатных изделий (ТИМ) производится гидрофобизация волокна, что позволяет снизить водопоглощение в процессе транспортировки и монтажа ТИМ.
Смешанные — используемые в качестве монтажных, изготовляют на основе асбеста (асбестовый картон, асбестовая бумага, асбестовый войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита).
Показатели теплопроводимости пенобетона плотностью 150 кг/м3, изготовленного на цементе марки М500Д0, песка 5-й фракции, пенообразователяFoamin C и воды в сравнении с ППУ изоляцией, указаны в таблице № 1:[источникне указан 2186 дней]
Под промышленной теплоизоляцией чаще всего подразумевается теплоизоляция трубопроводов, емкостей, резервуаров и оборудования. Термоизоляцию трубопроводов и емкостей проводят с целью предотвращения охлаждения жидкости, находящейся в трубах, или во избежание образования конденсата на оборудовании. В случае, когда тепловые потери не важны, теплоизоляцию монтируют для соблюдения техники безопасности, например, для того, чтобы защитить обслуживающий персонал от ожогов. В настоящее время в связи с ростом стоимости энергоносителей тепловые потери стараются свести к минимуму, поэтому все чаще системы теплоизоляции включаются в комплекс средств для достижения энергоэффективности.
В промышленности к термоизоляции предъявляются повышенные требования, особенно к устойчивости материалов к рекордно высоким или, напротив, рекордно низким температурам (криогенное оборудование). На этапе разработки проекта промышленного объекта выбирается термоизоляционный материал. Сейчас проектировщики в промышленности, особенно на опасно-производственных объектах, предпочитают использовать негорючие материалы (класс НГ).
Многие традиционные теплоизоляционные материалы обрабатываются специальными пропитками для того, чтобы повысить их безопасность и снизить интенсивность горения (например, антипирены для сильно горючих материалов, таких как пенополистирол и пенополиуретан), но применение антиперенов не позволяет горючим материалам стать негорючими, а также может привести к образованию поверхностной коррозии технологического оборудования.
Теплоизоляция стены выполняется следующими способами:
Навесной вентилируемый фасад с применением теплоизоляции (приемлемого класса пожарной безопасности)
Тонкослойная штукатурка фасадов по теплоизоляционному материалу (мокрый фасад, СФТК)
Трехслойная конструкция стен (трехслойная, слоистая или колодцевая кладка, сэндвич-панели клееные или сборные, трехслойные ж/б стеновые панели).
Теплоизоляция методом нанесения пенополиуретановой пены
Укладка теплоизоляционных плит между стойками каркасных домов (с металлическим или деревянным каркасом) с последующей отделкой облицовочными панелями
В гражданских зданиях с точки зрения теплофизики наиболее эффективно применять теплоизоляцию снаружи, так как в этом случае несущая конструкция стены находится всегда в зоне положительных температур и оптимальной влажности. Возможно применение теплоизоляции изнутри здания, но при этом варианте необходимо проводить расчет по влажностному режиму на необходимость слоя пароизоляции и только в исключительных случаях, когда невозможно изменить фасад здания по тем или иным соображениям (здание имеет высокую архитектурную и художественную ценность и т. д.)[2]
Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, — теплоизоляторы. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями. Теплоизоляторы отличаются неоднородной структурой и высокой пористостью.
На сегодняшний день теплоизоляционные материалы на основе аэрогелей обладают самыми низкими коэффициентами теплопроводности (0,017 — 0,21 Вт/(м•K)).
ГОСТ 16381-77 является действующим, однако морально и технически устарел. Например классификация «Горючести» по «Технический регламент о требованиях пожарной безопасности» № 123-ФЗ (ред. от 02.07.2013) имеют иную градацию негорючие (НГ), Слабогорючие (Г1), умереногорючие (Г2), нормальногорючие (Г3) и сильногорючие (Г4)
Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. - Москва, ИТиГ ДВО РАН, 2010. 400 с.
Федеральный закон Российской Федерации № 261-ФЗ от 23.11.2009 г. «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»