Loading AI tools
Из Википедии, свободной энциклопедии
Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации[1]. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов[2]. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.
При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — уменьшает.
Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10−3) и для их измерений требуются чувствительные вольтметры или прецизионные усилители или прецизионные усилители + АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.
Полупроводниковый тензорезистор обладает гораздо большей чувствительностью из-за изменения свойств полупроводникового материала при деформации.[3]
Чувствительность тензорезистора характеризуется безразмерным параметром — коэффициентом тензочувствительности который определяется как:
где:
Относительная деформация определяется как:
где
Для плёночных металлических тензорезисторов параметр слабо зависит от деформации и немного превышает 2[4].
При включении тензорезистора в мост Уитстона, в котором остальные 3 резистора постоянны (не имеют возможности регулирования сопротивления), выходное напряжение диагонали этого моста выражается формулой:
где:
Типичные значения коэффициента тензочувствительности для разных материалов приведены в таблице.
Материал | Коэффициент тензочувствительности |
---|---|
Металлическая фольга | 2-5 |
Тонкая металлическая плёнка (например, константановая) | 2 |
Монокристаллический кремний | От −125 до +200 |
Поликристаллический кремний | ±30 |
Тонкоплёночные резистивные материалы | 100 |
При изменении температуры изменяется сопротивление тензорезистора, не связанное с деформацией. Это является вредным побочным эффектом. Через коэффициент тензочувствительности относительное изменение сопротивления выражается формулой:
где:
Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного тока (диагональ моста A—D). С помощью переменного резистора производится балансировка моста, так, чтобы в отсутствие приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.
При выполнении соотношения напряжение диагонали моста равно нулю. При деформации изменяется сопротивление (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов и (точки B) и изменение напряжения диагонали B—C моста — полезный сигнал.
Изменение сопротивления может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения деформации. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.
Например, в схеме на рисунке вместо постоянного резистора включают такой же тензорезистор, как и , но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления, вызванного изменением температуры, равны, и температурный уход при этом компенсируется.
Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие полезные сервисные функции.
Обычно современные тензорезисторы представляют собой чувствительный элемент в виде зигзагообразного проводника, нанесённого на гибкую подложку. Тензорезистор приклеивается подложкой на поверхность исследуемого на деформации объекта. Проводники тензорезисторов обычно изготавливаются из тонкой металлической проволоки, фольги, или напыляются в вакууме для получения плёнки полупроводника или металла. В качестве подложки обычно используют ткань, бумагу, полимерную плёнку, слюду и др. Для присоединения чувствительного элемента в электрическую цепь тензорезистор имеет выводные проволочные концы или контактные площадки.
Плёночные металлические тензорезисторы имеют площадь около 2‑10 мм2.
Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.