Loading AI tools
спорадический Из Википедии, свободной энциклопедии
Спорадическая группа — одна из 26 исключительных групп в теореме о классификации простых конечных групп.
Простая группа — это группа G, не содержащая каких-либо нормальных подгрупп, отличных от самой группы G и тривиальной (единичной) подгруппы. Теорема классификации утверждает, что список конечных простых групп[англ.] состоит из 18 счётных бесконечных семейств, плюс 26 исключений, которые не попадают в эту классификацию. Эти исключения называются спорадическими группами. Они также известны под названиями «спорадические простые группы» или «спорадические конечные группы». Поскольку группа Титса не является строго группой лиева типа, иногда она также считается спорадической[1] и в этом случае является 27-й спорадической группой.
Группа Монстр является наибольшей среди спорадических групп и содержит в качестве подгрупп или подфакторгрупп[англ.] все, за исключением шести, другие спорадические группы.
Пять спорадических групп обнаружил Матьё в 1860-х годах, остальные 21 найдены между 1965 и 1975 годами. Существование нескольких из этих групп было предсказано до их построения. Позднее было доказано, что этим окончательно завершён полный поиск. Большинство групп носят имена математиков, первыми предсказавшими их существование.
Полный список групп:
Группа Титса T иногда также считается спорадической группой (она почти лиева типа) и по этой причине по некоторым источникам число спорадических групп даётся как 27, а не 26. По другим источникам группа Титса не считается ни спорадической, ни группой лиева типа.
Для всех спорадических групп были построены матричные представления над конечными полями.
Наиболее раннее употребление термина «спорадическая группа» найдено у Бёрнсайда[2], где он говорит о группах Матьё: «Эти, по всей видимости, спорадические простые группы требуют более тщательного исследования, чем до сих пор получали».
Диаграмма справа основывается на диаграмме Ронана[3]. Спорадические группы также имеют большое число подгрупп, не являющихся спорадическими, но на диаграмме они не представлены ввиду их огромного числа.
Из 26 спорадических групп 20 находятся внутри группы «Монстр» в качестве подгрупп или подфакторгрупп[англ.].
Шесть исключений J1, J3, J4, O’N, Ru и Ly иногда называют париями[англ.].
Остальные двадцать групп называют Счастливым семейством (название дал Роберт Грис[англ.]) и их можно разбить на три поколения.
Группы Mn для n = 11, 12, 22, 23 и 24 являются кратно-транзитивными группами перестановок n точек. Все они являются подгруппами группы M24, которая является группой перестановок 24 точек.
Все подфакторы[англ.] группы автоморфизмов решётки в 24-мерном пространстве, называемой решёткой Лича:
Состоит из подгрупп, которые тесно связаны с Монстром M:
(Эта серия продолжается и дальше — произведение M12 и группы порядка 11 является централизатором элемента порядка 11 в M.)
Группа Титса также принадлежит этому поколению — существует подгруппа , нормализующая 2C2 подгруппу B, порождающая подгруппу , нормализующую некоторую подгруппу Q8 Монстра. является также подгруппой групп Фишера Fi22, Fi23 и Fi24′ и «малого Монстра» B. является подгруппой группы-парии Рудвалиса Ru и не имеет других зависимостей со спорадическими простыми группами кроме перечисленных выше.
Группа | Поколение | Порядок (последовательность A001228 в OEIS) | Значащих цифр | Разложение | Тройка Стандартных генераторов (a, b, ab)[4][5][6] | Другие условия |
---|---|---|---|---|---|---|
F1 или M | третье | 8080174247945128758864599049617107 57005754368000000000 | ≈ 8⋅1053 | 246 • 320 • 59 • 76 • 112 • 133 • 17 • 19 • 23 • 29 • 31 • 41 • 47 • 59 • 71 | 2A, 3B, 29 | |
F2 или B[англ.] | третье | 4154781481226426191177580544000000 | ≈ 4⋅1033 | 2C, 3A, 55 | ||
Fi24' или F3+[англ.] | третье | 1255205709190661721292800 | ≈ 1⋅1024 | 221 • 316 • 52 • 73 • 11 • 13 • 17 • 23 • 29 | 2A, 3E, 29 | |
Fi23[англ.] | третье | 4089470473293004800 | ≈ 4⋅1018 | 218 • 313 • 52 • 7 • 11 • 13 • 17 • 23 | 2B, 3D, 28 | |
Fi22[англ.] | третье | 64561751654400 | ≈ 6⋅1013 | 217 • 39 • 52 • 7 • 11 • 13 | 2A, 13, 11 | |
F3 или Th[англ.] | третье | 90745943887872000 | ≈ 9⋅1016 | 215 • 310 • 53 • 72 • 13 • 19 • 31 | 2, 3A, 19 | |
Ly[англ.] | пария | 51765179004000000 | ≈ 5⋅1016 | 28 • 37 • 56 • 7 • 11 • 31 • 37 • 67 | 2, 5A, 14 | |
F5 или HN[англ.] | третье | 273030912000000 | ≈ 3⋅1014 | 214 • 36 • 56 • 7 • 11 • 19 | 2A, 3B, 22 | |
Co1 | второе | 4157776806543360000 | ≈ 4⋅1018 | 221 • 39 • 54 • 72 • 11 • 13 • 23 | 2B, 3C, 40 | |
Co2[англ.] | второе | 42305421312000 | ≈ 4⋅1013 | 218 • 36 • 53 • 7 • 11 • 23 | 2A, 5A, 28 | |
Co3[англ.] | второе | 495766656000 | ≈ 5⋅1011 | 210 • 37 • 53 • 7 • 11 • 23 | 2A, 7C, 17 | |
O'N[англ.] | пария | 460815505920 | ≈ 5⋅1011 | 29 • 34 • 5 • 73 • 11 • 19 • 31 | 2A, 4A, 11 | |
Suz[англ.] | второе | 448345497600 | ≈ 4⋅1011 | 213 • 37 • 52 • 7 • 11 • 13 | 2B, 3B, 13 | |
Ru | пария | 145926144000 | ≈ 1⋅1011 | 214 • 33 • 53 • 7 • 13 • 29 | 2B, 4A, 13 | |
F7 или He[англ.] | третье | 4030387200 | ≈ 4⋅109 | 210 • 33 • 52 • 73 • 17 | 2A, 7C, 17 | |
McL[англ.] | второе | 898128000 | ≈ 9⋅108 | 27 • 36 • 53 • 7 • 11 | 2A, 5A, 11 | |
HS[англ.] | второе | 44352000 | ≈ 4⋅107 | 29 • 32 • 53 • 7 • 11 | 2A, 5A, 11 | |
J4[англ.] | пария | 86775571046077562880 | ≈ 9⋅1019 | 221 • 33 • 5 • 7 • 113 • 23 • 29 • 31 • 37 • 43 | 2A, 4A, 37 | |
J3 или HJM[англ.] | пария | 50232960 | ≈ 5⋅107 | 27 • 35 • 5 • 17 • 19 | 2A, 3A, 19 | |
J2 или HJ | второе | 604800 | ≈ 6⋅105 | 27 • 33 • 52 • 7 | 2B, 3B, 7 | |
J1[англ.] | пария | 175560 | ≈ 2⋅105 | 23 • 3 • 5 • 7 • 11 • 19 | 2, 3, 7 | |
M24[англ.] | первое | 244823040 | ≈ 2⋅108 | 210 • 33 • 5 • 7 • 11 • 23 | 2B, 3A, 23 | |
M23[англ.] | первое | 10200960 | ≈ 1⋅107 | 27 • 32 • 5 • 7 • 11 • 23 | 2, 4, 23 | |
M22[англ.] | первое | 443520 | ≈ 4⋅105 | 27 • 32 • 5 • 7 • 11 | 2A, 4A, 11 | |
M12[англ.] | первое | 95040 | ≈ 1⋅105 | 26 • 33 • 5 • 11 | 2B, 3B, 11 | |
M11[англ.] | первое | 7920 | ≈ 8⋅103 | 24 • 32 • 5 • 11 | 2, 4, 11 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.