Loading AI tools
Из Википедии, свободной энциклопедии
Граф Мейнеля — это граф, в котором любой нечётный цикл длины пять и более имеет по меньшей мере две хорды, то есть два ребра, соединяющих несоседние вершины цикла[1]. Хорды могут быть непересекающимися (как на рисунке), а могут и пересекаться.
Графы Мейнеля названы именем Генри Мейнеля (известного также по гипотезе Мейнеля), который доказал в 1976 году, что они являются совершенными графами[2] задолго до доказательства cильной гипотезы о совершенных графах, полностью описывающей совершенные графы. Тот же результат был независимо обнаружен Маркосяном и Карапетяном[3].
Графы Мейнеля являются подклассом совершенных графов. Любой порождённый подграф графа Мейнеля является другим графом Мейнеля и в любом графе Мейнеля размер наибольшей клики равен наименьшему числу цветов, необходимых для раскраски графа. Таким образом, графы Мейнеля удовлетворяют определению совершенных графов, что кликовое число равно хроматическому числу в любом порождённом подграфе[1][2][3].
Графы Мейнеля называются также очень сильно совершенными графами, поскольку (как предположил Мейнель и доказал Хланг) они могут быть описаны свойством, обобщающим определение свойства строго совершенных графов — в любом порождённом подграфе графа Мейнеля любая вершина принадлежит независимому множеству, которое пересекается с любой максимальной кликой[1][4].
Графы Мейнеля содержат хордальные графы, графы чётности и их подклассы, интервальные графы, дистанционно-наследуемые графы, двудольные графы и рёберно совершенные графы[1].
Хотя графы Мейнеля образуют очень общий подкласс графов, они не включают всех совершенных графов. Например, домик (пятиугольник с одной хордой) совершенен, но графом Мейнеля не является.
Графы Мейнеля можно распознать за полиномиальное время[5] и некоторые задачи оптимизации на графах, включая раскраску графов, которые NP-трудны для произвольных графов, могут быть решены за полиномиальное время для графов Мейнеля[6][7].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.