Произведение Хатри — Рао

Из Википедии, свободной энциклопедии

Произведение Хатри — Рао — операция умножения матриц, определяемая выражением[1][2]:

в котором -й блок является произведением Кронекера соответствующих блоков и при условии, что количество строк и столбцов обеих матриц равно. Размерность произведения — .

К примеру, если матрицы и имеют блочную размерность 2 × 2:

и ,

то:

.

Столбцовое произведение Хатри — Рао

Суммиров вкратце
Перспектива

Столбцовое произведение Кронекера двух матриц также принято называть произведением Хатри — Рао. Это произведение предполагает, что блоки матриц являются их столбцами. В этом случае , , и для каждого : . Результатом произведения является -матрица, каждый столбец которой получается как произведение Кронекера соответствующих столбцов матриц и . Например, для:

и

столбцовое произведение:

.

Столбцовая версия произведения Хатри — Рао используется в линейной алгебре для аналитической обработки данных[3] и оптимизации решений проблемы обращения диагональных матриц[4][5]; в 1996 году его было предложено использовать в описании задачи совместного оценивания угла прихода и времени задержки сигналов в цифровой антенной решётке[6], а также для описания отклика 4-координатного радара[7].

Торцевое произведение

Суммиров вкратце
Перспектива
Thumb
Торцевое произведение матриц

Существует альтернативная концепция произведения матриц, которая в отличие от столбцовой версии использует разбиение матриц на строки[8] — торцевое произведение (англ. face-splitting product)[7][9][10] или транспонированное произведение Хатри — Рао (англ. transposed Khatri — Rao product)[11]. Этот тип матричного умножения базируется на построчном произведении Кронекера двух и более матриц с одинаковым количеством строк. Например, для:

и

можно записать[7]:

.

Основные свойства

Суммиров вкратце
Перспектива

Транспонирование (1996[7][9][12]):

,

Коммутативность и ассоциативная операция[7][9][12]:

где , и — матрицы, а — скаляр,

,[12] где - вектор с количеством элементов, равным количеству строк матрицы ,

Свойство смешанного произведения (1997[12]):

,
[10],
[11][13],
[14],

где обозначает произведение Адамара.

Также выполняются следующие свойства:

  • [12],
  • ,[7] где - вектор-строка,
  • [14],
  • [13],
  • ,
  • [12],
  • , где и являются векторами согласованной размерности,
  • [15], ,
  • [16], где и являются векторами согласованной размерности (следует из свойств 3 и 8),
  • ,
  • ,

где является матрицей дискретного преобразования Фурье, - символ векторной свёртки (тождество следует из свойств отсчётного скетча[17]),

  • [18], где - матрица, - матрица, , - векторы из и единиц соответственно,
  • [19], где является матрицей, - произведение Адамара и - вектор из единиц.
  • , где - символ проникающего торцевого произведения матриц.
  • По аналогии, , где - матрица, - матрица,
  • [12],
  • [10],
  • [11],
  • [19],
  • ,

где - вектор, сформированный из диагональных элементов матрицы , - операция формирования вектора из матрицы путём расположения одного под другим её столбцов.

Свойство поглощения произведения Кронекера:

[10][13]
,
,

где и являются векторами согласованной размерности.

Например[16]:

Теорема[16]

Если , где представляют собой независимые включения матрицы , содержащей строки , такие, что и ,
то с вероятностью для любого вектора , если количество строк
.

В частности, если элементами матрицы являются числа , можно получить , что при малых значениях согласуется с предельным значением леммы Джонсона-Линденштрауса о распределении.

Блочное торцевое произведение

Суммиров вкратце
Перспектива
Thumb
Примение блочного транспонированного торцевого произведения для описания отклика многогранной цифровой антенной решётки[13]

Для блочных матриц с одинаковым количеством столбцов в соответствующих блоках:

и

согласно определению[7], блочное торцевое произведение запишется в виде:

.

Аналогично, для блочного транспонированного торцевого произведения (или блочного столбцового произведения Хатри — Рао) двух матриц с одинаковым количеством столбцов в соответствующих блоках имеет место соотношение[7]:

.

Выполняется свойство транспонирования[13]:

Приложения

Семейство торцевых произведений матриц используется в тензорно-матричной теории цифровых антенных решёток для радиотехнических систем[11].

Торцевое произведение получило широкое распространение в системах машинного обучения, статистической обработке больших данных[16]. Оно позволяет сократить объёмы вычислений при реализации метода уменьшения размерности данных, получившего наименование тензорный скетч[16], а также быстрого преобразования Джонсона — Линденштрауса[16]. При этом осуществляется переход от исходной проецирующей матрицы к произведению Адамара, оперирующему матрицами меньшей размерности. Погрешность аппроксимации данных большой размерности на основе торцевого произведения матриц соответствует лемме о малом искажении[16][20]. В указанном контексте идея торцевого произведения может быть использована для решения задачи дифференциальной приватности (англ. differential privacy)[15]. Кроме того, аналогичные вычисления были применены для формирования тензоров совместной встречаемости в задачах обработки естественного языка и построения гиперграфов подобия изображений[21].

Торцевое произведение применяется для P-сплайн аппроксимации[18], построения обобщённых линейных моделей массивов данных (GLAM) при их статистической обработке[19] и может быть использовано для эффективной реализации ядерного метода машинного обучения, а также изучения взаимодействия генотипов с окружающей средой.[22]

См. также

  • Тензорный скетч[уточнить]
  • Лемма о малом искажении[уточнить]

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.