Loading AI tools
кривая на поверхности вращения, пересекающая все меридианы под постоянным углом Из Википедии, свободной энциклопедии
Локсодрома, или локсодромия[1] (от др.-греч. «λοξός» — «косой», «наклонный» и «δρόμος» — «путь»[2]) — кривая на поверхности вращения, пересекающая все меридианы под постоянным углом, называемым локсодромическим путевым углом.
Введена в рассмотрение португальским математиком Нониусом в 1529 году[3].
В труде «Tiphys batavus» (1624) нидерландский математик Виллеброрд Снелл пересекающую все меридианы под постоянным углом кривую назвал «локсодромой», исследовал её. Работа состояла из двух частей — теоретической и практических упражнений с рекомендациями[4].
На поверхности Земли локсодромами являются все параллели (путевой угол может быть равен 90°, 270° и т. д.) и все меридианы (путевой угол 0°, 180° и т. д.). Локсодромы под остальными углами являются спиралями, совершающими неограниченное число витков, приближаясь к полюсам. Тем не менее, если путешественник будет двигаться по любой локсодроме (кроме параллелей) с постоянной скоростью не останавливаясь, то он обязательно придёт к одному из полюсов за конечное время. Картографическая проекция, в которой все локсодромы изображены прямыми, называется проекцией Меркатора.
Если передвигаться с фиксированным путевым углом по Земле, которую условно принять за сферу или геоид, то траектория движения объекта и будет локсодромией[5]. Локсодрома не является кратчайшим путём между двумя пунктами (исключение — меридианы и экватор). Тем не менее, в старину суда и путешественники нередко двигались по локсодромам, так как идти под постоянным углом к Полярной звезде проще и удобнее. С изобретением компаса мореплаватели перешли на движение по «магнитным локсодромам», то есть по линиям с постоянным углом к магнитному северу, что дало возможность продолжать движение и в облачную погоду. Но как только были выяснены магнитные склонения во всех местах Земли, люди вновь перешли на обычные локсодромы. Даже в XX веке локсодромия использовалась при расчёте требуемого курса при прокладке маршрута самолётов и морских судов. Со временем, когда появились приборы с достаточной вычислительной мощностью для вычисления текущего требуемого путевого угла, начали активно применять ортодромию (кратчайший путь), особенно для дальних маршрутов самолётов[6].
Для того чтобы на полётных картах проложить локсодромический путь, необходимо соединить конечные точки маршрута прямой линией и измерить путевой угол у среднего меридиана. Точнее, локсодромический путевой угол рассчитывается как средний угол, снятый у начальной и конечной точек маршрута. После этого полученный путевой угол строят последовательно у всех меридианов на карте, начиная от пункта вылета. Полученная при построении ломаная линия практически близко подходит к локсодромии. Более точно локсодромический путевой угол может быть вычислен по формуле:
,
Пример. Определить истинный локсодромический путевой угол при полёте из г. Реймса в г. Потсдам.
Решение. Определяем координаты:
средняя широта ; . Следовательно,
Полученный результат будет правильным, если конечная точка маршрута лежит в первой четверти (0 — 90°). Если конечная точка лежит во второй четверти (90° — 180°), искомый путевой угол получают, вычитая полученное число градусов из 180°. Если же конечная точка находится в третьей четверти (180° — 270°), к полученному углу прибавляют 180°, а если в четвёртой четверти (270° — 360°), то полученный угол вычитают из 360°.
Длина локсодромии в км определяется по формулам:
а) Для углов , близких к 0° или 180°,
где и — широты пунктов вылета и прибытия, выраженные в минутах, или
где и выражены в градусах.
б) Для углов , близких к 90° или 270°,
Разность между длинами локсодромии и ортодромии DS достигает своей максимальной величины при полёте вдоль параллели.
Так, например, длина локсодромии между Реймсом и Потсдамом из предыдущего примера может быть приближённо вычислена по формуле:
Параметрические формулы, задающие локсодрому с путевым углом на сфере радиуса в декартовой системе координат, имеют вид:
где параметр изменяется от 0 до и является долготой точки. Здесь и — гиперболические косинус и тангенс.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.