ДНК-компьютер
Из Википедии, свободной энциклопедии
Remove ads
Из Википедии, свободной энциклопедии
ДНК-компьютер — вычислительная система, использующая кодирование данных последовательностями молекул ДНК и применяющая к ним технологии молекулярной биологии для выполнения вычислительных операций.[1]
В 1994 году Леонард Адлеман, профессор университета Южной Калифорнии, продемонстрировал, что с помощью пробирки с ДНК можно весьма эффективно решать классическую комбинаторную «задачу о коммивояжере» (кратчайший маршрут обхода вершин графа).[2] Классические компьютерные архитектуры требуют множества вычислений с опробованием каждого варианта.
Метод ДНК позволяет сразу сгенерировать все возможные варианты решений с помощью известных биохимических реакций. Затем возможно быстро отфильтровать именно ту молекулу-нить, в которой закодирован нужный ответ.
Проблемы, возникающие при этом:
Биокомпьютер Адлемана отыскивал оптимальный маршрут обхода для 7 вершин графа. Но чем больше вершин графа, тем больше биокомпьютеру требуется ДНК-материала.
Было подсчитано, что при масштабировании методики Адлемана для решения задачи обхода не 7 пунктов, а около 200, масса количества ДНК, необходимого для представления всех возможных решений превысит массу нашей планеты.
В 2002 году исследователи из Института Вейцмана в Реховоте, Израиль, представили программируемую молекулярную вычислительную машину, состоящую из ферментов и молекул ДНК.[3] 28 апреля 2004 года, Эхуд Шапиро, Яаков Бененсона, Биньямин Гил, Ури Бен-Дор и Ривка Адар из Института Вейцмана сообщили в журнале «Nature» о создании ДНК-компьютера с модулем ввода-вывода данных.[4]
В январе 2013 года исследователи смогли записать в ДНК-коде несколько фотографий JPEG, набор шекспировских сонетов и звуковой файл.[5]
В марте 2013 года исследователи создали транскриптор (биологический транзистор).[6]
В 2019 группой молекулярных биологов под руководством Чунлея Го из Рочестерского университета создали на основе ДНК вычислительную систему, способную извлекать квадратные корни из 10-битных чисел.[7]
Нити ДНК имеют в своём составе четыре азотистых основания: цитозин, гуанин, аденин, тимин. Их последовательность кодирует информацию. С помощью ферментов эту информацию можно изменять: полимеразы достраивают цепочки ДНК, а нуклеазы их разрезают и укорачивают. Некоторые ферменты способны разрезать и соединять цепи ДНК в местах, указываемых другими ферментами — лигазами. Таким образом, ДНК-компьютеры могут хранить и обрабатывать информацию. Также, химические реакции на разных частях молекул проходят независимо, параллельно, что обеспечивает высокую скорость вычислений.[8]
Конечный биоавтомат Бененсона-Шапиро — технология многоцелевого ДНК-компьютера, разрабатываемая израильским профессором Эхудом Шапиро[англ.] и Яаковом Бененсоном из Вейцмановского института.
Его основой являются уже известные свойства биомолекул, таких как ДНК и ферменты. Функционирование ДНК-компьютера сходно с функционированием теоретического устройства, известного в математике как «конечный автомат» или машина Тьюринга.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.