Расширяющееся (англ. splay tree) или косое дерево является двоичным деревом поиска, в котором поддерживается свойство сбалансированности. Это дерево принадлежит классу «саморегулирующихся деревьев», которые поддерживают необходимый баланс ветвления дерева, чтобы обеспечить выполнение операций поиска, добавления и удаления за логарифмическое время от числа хранимых элементов. Это реализуется без использования каких-либо дополнительных полей в узлах дерева (как, например, в Красно-чёрных деревьях или АВЛ-деревьях, где в вершинах хранится, соответственно, цвет вершины и глубина поддерева). Вместо этого «расширяющие операции» (splay operation), частью которых являются вращения, выполняются при каждом обращении к дереву.

Краткие факты Расширяющееся дерево, Тип ...
Расширяющееся дерево
Тип Дерево
Год изобретения 1985
Автор Дэниел Слитор и Роберт Андре Тарьян
Сложность в О-символике
В среднем В худшем случае
Расход памяти O(n) O(n)
Поиск O(log n) O(log n)
Вставка O(log n) O(log n)
Удаление O(log n) O(log n)
Закрыть

Учётная стоимость в расчёте на одну операцию с деревом составляет .

Расширяющееся дерево придумали Роберт Тарьян и Даниель Слейтор в 1983 году.

Операции

Splay (расширение)

Основная операция дерева. Заключается в перемещении вершины в корень при помощи последовательного выполнения трёх операций: Zig, Zig-Zig и Zig-Zag. Обозначим вершину, которую хотим переместить в корень за x, её родителя — p, а родителя p (если существует) — g.

Zig: выполняется, когда p является корнем. Дерево поворачивается по ребру между x и p. Существует лишь для разбора крайнего случая и выполняется только один раз в конце, когда изначальная глубина x была нечётна.

Zig-Zig: выполняется, когда и x, и p являются левыми (или правыми) сыновьями. Дерево поворачивается по ребру между g и p, а потом — по ребру между p и x.

Zig-Zag: выполняется, когда x является правым сыном, а p — левым (или наоборот). Дерево поворачивается по ребру между p и x, а затем — по ребру между x и g.

Search (поиск элемента)

Поиск выполняется как в обычном двоичном дереве поиска. При нахождении элемента запускаем Splay для него.

Insert (добавление элемента)

Запускаем Split() от добавляемого элемента (см Split(), напоминание: в нём используется ближайший больший либо равный элемент существующего дерева) и подвешиваем получившиеся деревья за элемент к добавлению.

Delete (удаление элемента)

Находим элемент в дереве, делаем Splay для него, делаем текущим деревом Merge его детей.

Merge (объединение двух деревьев)

Для слияния деревьев T1 и T2, в которых все ключи T1 меньше ключей в T2, делаем Splay для максимального элемента T1, тогда у корня T1 не будет правого ребенка. После этого делаем T2 правым ребенком T1.

Split (разделение дерева на две части)

Для разделения дерева по значению x найдем наименьший элемент, больший или равный x, и сделаем для него Splay. После этого отсоединяем от корня левого ребёнка и возвращаем 2 получившихся дерева.

Реализация

Одной из реализаций расширяющегося дерева может послужить реализация, использующая 3 указателя в каждой вершине: указатель на правого и левого сыновей, а также на родителя. Это позволяет избежать рекурсивной реализации, что, в свою очередь, повлечет экономию памяти. Минусом в данном случае выступает большее количество присваиваний для обновления указателей, что может сказаться на конечной производительности.

Ниже представлена реализация расширяющегося дерева, использующая по 3 указателя в каждом узле. Также, в данной реализации операция Splay используется во всех основных операциях, выполняемых над деревом — при вставке, удалении и поиске для достижения лучшей сбалансированности дерева.

#ifndef SPLAYTREE_H
#define SPLAYTREE_H

template<typename T> class SplayTree {
private:
    struct SplayNode {
        Node * leftChild;
        Node * rightChild
        Node * parent;
        T data;

        Node (const T & key = T()) 
        : leftChild(nullptr), rightChild(nullptr), parent(nullptr), key(key) {}

        ~Node () {
                delete leftChild;
                delete rightChild;
        }
    } * root;

private:
    SplayNode * _Successor(SplayNode * localRoot) const {
        SplayNode * successor = localRoot;

        if (successor->rightChild != nullptr) {
            successor = _Minimum(successor->rightChild);
        } else {
            while (successor != root
                    || successor != successor->parent->leftChild) {
                successor = successor->parent;
            }
        }

        return successor;
    }

    SplayNode * _Predecessor(SplayNode * localRoot) const {
        SplayNode * predecessor = localRoot;

        if (predecessor->leftChild != nullptr) {
            predecessor = _Maximum(predecessor->leftChild);
        } else {
            while (predecessor != root
                   || predecessor != predecessor->parent->rightChild) {
                predecessor = predecessor->parent;
            }
        }

        return predecessor;
    }

    SplayNode * _Minimum(SplayNode * localRoot) const {
        SplayNode * minimum = localRoot;

        while (minimum->leftChild != nullptr) 
            minimum = minimum->leftChild;
        
        return minimum;
    }

    SplayNode * _Maximum(SplayNode * localRoot) const {
        SplayNode * maximum = localRoot;

        while (maximum->rightChild != nullptr) 
            maximum = maximum->rightChild;

        return maximum;
    }

    SplayNode * _Search(const T & key) {
        SplayNode * searchedElement = root;

        while (searchedElement != nullptr) {
            if (searchedElement->data < key) 
                searchedElement = searchedElement->rightChild;
            else if (key < searchedElement->data) 
                searchedElement = searchedElement->leftChild;
            else if (searchedElement->data == key) {
                _Splay(searchedElement);
                return searchedElement;
            }
        }

        return nullptr;
    }

    void _LeftRotate(SplayNode * localRoot) {
        SplayNode * rightChild = localRoot->rightChild;

        localRoot->rightChild = rightChild->leftChild;
        if (rightChild->leftChild != nullptr) 
            rightChild->leftChild->parent = localRoot;

        _Transplant(localRoot, rightChild);

        rightChild->leftChild = localRoot;
        rightChild->leftChild->parent = rightChild;
    }

    void _RightRotate(SplayNode * localRoot) {
        SplayNode * leftChild = localRoot->leftChild;

        localRoot->leftChild = leftChild->rightChild;
        if (leftChild->rightChild != nullptr) 
            leftChild->rightChild->parent = localRoot;

        _Transplant(localRoot, leftChild);

        leftChild->rightChild = localRoot;
        leftChild->rightChild->parent = leftChild;
    }

    void _Transplant(SplayNode * localParent, SplayNode * localChild) {
        if (localParent->parent == nullptr) 
            root = localChild;
        else if (localParent == localParent->parent->leftChild) 
            localParent->parent->leftChild = localChild;
        else if (localParent == localParent->parent->rightChild) 
            localParent->parent->rightChild = localChild;

        if (localChild != nullptr)
            localChild->parent = localParent->parent;
    }

    void _Splay(SplayNode * pivotElement) {
        while (pivotElement != root) {
            if (pivotElement->parent == root) {

                if (pivotElement == pivotElement->parent->leftChild) {
                    _RightRotate(pivotElement->parent);
                } else if (pivotElement == pivotElement->parent->rightChild) {
                    _LeftRotate(pivotElement->parent);
                }
            } else {
                // Zig-Zig step.
                if (pivotElement == pivotElement->parent->leftChild &&
                    pivotElement->parent == pivotElement->parent->parent->leftChild) {

                    _RightRotate(pivotElement->parent->parent);
                    _RightRotate(pivotElement->parent);

                } else if (pivotElement == pivotElement->parent->rightChild &&
                           pivotElement->parent == pivotElement->parent->parent->rightChild) {

                    _LeftRotate(pivotElement->parent->parent);
                    _LeftRotate(pivotElement->parent);
                }
                // Zig-Zag step.
                else if (pivotElement == pivotElement->parent->rightChild &&
                    pivotElement->parent == pivotElement->parent->parent->leftChild) {

                    _LeftRotate(pivotElement->parent);
                    _RightRotate(pivotElement->parent);

                } else if (pivotElement == pivotElement->parent->leftChild &&
                           pivotElement->parent == pivotElement->parent->parent->rightChild) {

                    _RightRotate(pivotElement->parent);
                    _LeftRotate(pivotElement->parent);
                }
            }
        }
    }
    
public:
    SplayTree() { root = nullptr; }

    virtual ~SplayTree() { delete root; }

    void Insert(const T & key) {
        SplayNode * preInsertPlace = nullptr;
        SplayNode * insertPlace = root;

        while (insertPlace != nullptr) {
            preInsertPlace = insertPlace;

            if (insertPlace->data() < key) 
                insertPlace = insertPlace->rightChild;
            else if (key <= insertPlace->data) 
                insertPlace = insertPlace->leftChild;
        }

        SplayNode * insertElement = new SplayNode(key);
        insertElement->parent = preInsertPlace;

        if (preInsertPlace == nullptr) 
            root = insertElement;
        else if (preInsertPlace->data < insertElement->data) 
            preInsertPlace->rightChild = insertElement;
        else if (insertElement->data <= preInsertPlace->data) 
            preInsertPlace->leftChild = insertElement;

        _Splay(insertElement);
    }

    void Remove(const T & key) {
        SplayNode * removeElement = _Search(key);

        if (removeElement != nullptr) {
            if (removeElement->rightChild == nullptr) 
                _Transplant(removeElement, removeElement->leftChild);
            else if (removeElement->leftChild == nullptr) 
                _Transplant(removeElement, removeElement->rightChild);
            else {
                SplayNode * newLocalRoot = _Minimum(removeElement->rightChild);

                if (newLocalRoot->parent != removeElement) {

                    _Transplant(newLocalRoot, newLocalRoot->rightChild);

                    newLocalRoot->rightChild = removeElement->rightChild;
                    newLocalRoot->rightChild->parent = newLocalRoot;
                }

                _Transplant(removeElement, newLocalRoot);

                newLocalRoot->leftChild = removeElement->leftChild;
                newLocalRoot->leftChild->parent = newLocalRoot;

                _Splay(newLocalRoot);
            }

            delete removeElement;
        }
    }

    bool Search(const T &key) { return _Search(key) != nullptr; }

    bool isEmpty() const { return root == nullptr; }

    T Successor(const T & key) {
        if (_Successor(_Search(key)) != nullptr) {
            return _Successor(_Search(key))->getValue();
        } else {
            return -1;
        }
    }

    T Predecessor(const T & key) {
        if (_Predecessor(_Search(key)) != nullptr) {
            return _Predecessor(_Search(key))->getValue();
        } else {
            return -1;
        }
    }
};

#endif //SPLAYTREE_H

Примечание

Расширяющееся дерево предоставляет самоизменяющуюся структуру — структуру, характеризующуюся тенденцией хранить узлы, к которым часто происходит обращение, вблизи верхушки дерева, в то время как узлы, к которым обращение происходит редко, перемещаются ближе к листьям. Таким образом время обращения к часто посещаемым узлам будет меньше, а время обращения к редко посещаемым узлам — больше среднего.

Расширяющееся дерево не обладает никакими явными функциями балансировки, но процесс скоса узлов к корню способствует поддержанию дерева в сбалансированном виде.

См. также

  • Сбалансированные (самобалансирующиеся) деревья:

Литература

  • Томас Х. Кормен и др. Алгоритмы: построение и анализ. — 2-е изд. М.: Издательский дом «Вильямс», 2007. — С. 1296. ISBN 5-8459-0857-4.
  • Daniel Sleator, Robert Tarjan. A data structure for dynamic trees. — Journal of Computer and System Sciences, 1983. — С. 262—391.

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.