Loading AI tools
Из Википедии, свободной энциклопедии
Двоичное дерево поиска (англ. binary search tree, BST) — двоичное дерево, для которого выполняются следующие дополнительные условия (свойства дерева поиска):
Двоичное дерево поиска | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тип | дерево | |||||||||||||||
Год изобретения | 1960 | |||||||||||||||
Автор | Andrew Donald Booth[вд] | |||||||||||||||
Сложность в О-символике | ||||||||||||||||
|
||||||||||||||||
Медиафайлы на Викискладе |
Очевидно, данные в каждом узле должны обладать ключами, на которых определена операция сравнения меньше либо равно.
Как правило, информация, представляющая каждый узел, является записью, а не единственным полем данных. Однако это касается реализации, а не природы двоичного дерева поиска.
Для целей реализации двоичное дерево поиска можно определить так:
Двоичное дерево поиска не следует путать с двоичной кучей, построенной по другим правилам.
Основным преимуществом двоичного дерева поиска перед другими структурами данных является возможная высокая эффективность реализации основанных на нём алгоритмов поиска и сортировки.
Двоичное дерево поиска применяется для построения более абстрактных структур, таких, как множества, мультимножества, ассоциативные массивы.
Базовый интерфейс двоичного дерева поиска состоит из трёх операций:
Этот абстрактный интерфейс является общим случаем, например, таких интерфейсов, взятых из прикладных задач:
По сути, двоичное дерево поиска — это структура данных, способная хранить таблицу пар (key, value) и поддерживающая три операции: FIND, INSERT, REMOVE.
Кроме того, интерфейс двоичного дерева включает ещё три дополнительных операции обхода узлов дерева: INFIX_TRAVERSE, PREFIX_TRAVERSE и POSTFIX_TRAVERSE. Первая из них позволяет обойти узлы дерева в порядке неубывания ключей.
Дано: дерево Т и ключ K.
Задача: проверить, есть ли узел с ключом K в дереве Т, и если да, то вернуть ссылку на этот узел.
Алгоритм:
Дано: дерево Т и пара (K, V).
Задача: вставить пару (K, V) в дерево Т (при совпадении K, заменить V).
Алгоритм:
Дано: дерево Т с корнем n и ключом K.
Задача: удалить из дерева Т узел с ключом K (если такой есть).
Алгоритм:
Есть три операции обхода узлов дерева, отличающиеся порядком обхода узлов.
Первая операция — INFIX_TRAVERSE — позволяет обойти все узлы дерева в порядке возрастания ключей и применить к каждому узлу заданную пользователем функцию обратного вызова f, операндом которой является адрес узла. Эта функция обычно работает только с парой (K, V), хранящейся в узле. Операция INFIX_TRAVERSE может быть реализована рекурсивным образом: сначала она запускает себя для левого поддерева, потом запускает данную функцию для корня, потом запускает себя для правого поддерева.
В других источниках эти функции именуются inorder, preorder, postorder соответственно[1]
Дано: дерево Т и функция f
Задача: применить f ко всем узлам дерева Т в порядке возрастания ключей
Алгоритм:
В простейшем случае функция f может выводить значение пары (K, V). При использовании операции INFIX_TRAVERSE будут выведены все пары в порядке возрастания ключей. Если же использовать PREFIX_TRAVERSE, то пары будут выведены в порядке, соответствующем описанию дерева, приведённого в начале статьи.
Операция «разбиение дерева по ключу» позволяет разбить одно дерево поиска на два: с ключами <K0 и ≥K0.
Этот раздел не завершён. |
Обратная операция: есть два дерева поиска, у одного ключи <K0, у другого ≥K0. Объединить их в одно дерево.
У нас есть два дерева: T1 (меньшее) и T2 (большее). Сначала нужно решить, откуда взять корень: из T1 или T2. Стандартного метода нет, возможные варианты:
алг ОбъединениеДеревьев(T1, T2) если T1 пустое, вернуть T2 если T2 пустое, вернуть T1 если решили сделать корнем T1, то T = ОбъединениеДеревьев(T1.правое, T2) T1.правое = T вернуть T1 иначе T = ОбъединениеДеревьев(T1, T2.левое) T2.левое = T вернуть T2
Всегда желательно, чтобы все пути в дереве от корня до листьев имели примерно одинаковую длину, то есть чтобы глубина и левого, и правого поддеревьев была примерно одинакова в любом узле. В противном случае теряется производительность.
В вырожденном случае может оказаться, что всё левое дерево пусто на каждом уровне, есть только правые деревья, и в таком случае дерево вырождается в список (идущий вправо). Поиск (а значит, и удаление и добавление) в таком дереве по скорости равен поиску в списке и намного медленнее поиска в сбалансированном дереве.
Для балансировки дерева применяется операция «поворот дерева». Поворот налево выглядит так:
Поворот направо выглядит так же, достаточно заменить в вышеприведенном примере все Left на Right и обратно. Достаточно очевидно, что поворот не нарушает упорядоченность дерева и оказывает предсказуемое (+1 или −1) влияние на глубины всех затронутых поддеревьев. Для принятия решения о том, какие именно повороты нужно совершать после добавления или удаления, используются такие алгоритмы, как «красно-чёрное дерево» и АВЛ. Оба они требуют дополнительной информации в узлах — 1 бит у красно-чёрного или знаковое число у АВЛ. Красно-чёрное дерево требует не более двух поворотов после добавления и не более трёх после удаления, но при этом худший дисбаланс может оказаться до 2 раз (самый длинный путь в 2 раза длиннее самого короткого). АВЛ-дерево требует не более двух поворотов после добавления и до глубины дерева после удаления, но при этом идеально сбалансировано (дисбаланс не более, чем на 1).
Сбалансированные деревья:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.