3 nm

Из Википедии, свободной энциклопедии

Техпроцесс 3 нм (англ. 3 nm) — технологический процесс в производстве полупроводниковых приборов. 3-нм процесс является следующей ступенью миниатюризации техпроцесса после 5-нанометрового.

По состоянию на 2022 год тайваньский производитель микросхем TSMC планировал запустить в серийное производство 3-нм полупроводниковый узел под названием N3 ко второй половине 2022 года[1][2]. Усовершенствованный 3-нм процесс производства микросхем под названием N3e может начаться в 2023 году[3]. Южнокорейский производитель микросхем Samsung в начале 2022 года официально ориентировался на те же сроки, что и TSMC, с началом производства 3 нм в первой половине 2022 года с использованием технологии 3GAE и 3-нм техпроцессом 2-го поколения (3GAP), который последует в 2023 году[4][5], в то время как, согласно другим источникам 2022 года, 3-нм технологический процесс Samsung дебютирует в 2024 году[6]. В 2022 году американский производитель Intel планировал начать 3-нм производство в 2023 году[7][8][9].

3-нм технологический процесс Samsung основан на технологии GAAFET (gate-all-around field-effect transistor), процесс TSMC использует технологию FinFET (fin field-effect transistor)[10] несмотря на то, что TSMC разработала GAAFET-транзистор[11]. В частности, Samsung планирует использовать свой собственный вариант GAAFET под названием MBCFET (многомостовый полевой транзистор)[12]. 3-нм техпроцесс Intel, получивший название «Intel 3», использует усовершенствованную, улучшенную и оптимизированную версию технологии FinFET с увеличенной производительностью изделия на ватт потребляемой мощности, использованием EUV-литографии, увеличением мощности микросхемы и её площади[13].

Термин «3 нанометра» не имеет отношения к физической характеристике транзисторов (такой, как длина затвора, шаг металлических проводников или шаг затвора). Согласно прогнозам, содержащимся в обновлении Международной плане для устройств и систем на 2021 год, опубликованном Ассоциацией стандартов IEEE Industry Connection, ожидается, что 3-нанометровый узел будет иметь шаг контактного затвора 48 нанометров и максимально плотный шаг металла (минимальное расстояние между двумя горизонтальными соединениями) 24 нанометра.[14] Однако в реальной коммерческой практике «3 нм» используется в основном как маркетинговый термин отдельными производителями микросхем для обозначения нового улучшенного поколения кремниевых полупроводниковых чипов с увеличением плотности транзисторов (то есть большей степени миниатюризации), увеличением скорости и снижением энергопотребления[15][16]. Более того, нет единого соглашения о том, какие числа считать 3-нм процессом. Обычно производитель ссылается на свой предыдущий технологический узел (в данном случае на 5-нм технологический узел) для сравнения. Например, TSMC заявила, что её 3-нм чипы FinFET снизят энергопотребление на 25–30 % при той же скорости, увеличат скорость на 10–15 % при той же мощности и увеличат плотность транзисторов примерно на 33 % по сравнению с предыдущими 5-нм чипами FinFET[17][18]. Samsung заявила, что её 3-нм техпроцесс снизит энергопотребление на 45 %, улучшит производительность на 23 % и уменьшит площадь поверхности на 16 % по сравнению с предыдущим 5-нм техпроцессом[19].

В 3 нм техпроцессе применяется та же EUV, что и в предыдущих, однако уже требует мультипаттернинга[20].

История

Суммиров вкратце
Перспектива

Демонстрации исследований и технологий

В 1985 году исследовательская группа Nippon Telegraph and Telephone (NTT) изготовила устройство MOSFET (NMOS) с длиной канала 150 нм и толщиной оксида затвора 2,5 нм.[21] В 1998 году исследовательская группа Advanced Micro Devices (AMD) изготовила устройство MOSFET (NMOS) с каналом длина 50 нм и толщиной оксида 1,3 нм.[22][23]

В 2003 году исследовательская группа NEC изготовила первые МОП-транзисторы с длиной канала 3 нм, используя процессы PMOS и NMOS.[24][25] В 2006 году команда из Корейского передового института науки и технологий (KAIST) и Национального центра нанотехнологий разработала многозатворный MOSFET шириной 3 нм, самое маленькое в мире наноэлектронное устройство, основанное на технологии gate-all-around (GAAFET).[26][27]

Коммерческое применение

В конце 2016 года TSMC объявила о планах строительства завода по производству полупроводниковых узлов 5 нм-3 нм с совместными инвестициями в размере около 15,7 млрд долларов США.[28]

В 2017 году TSMC объявила о начале строительства завода по производству полупроводников 3 нм в научном парке Тайнань на Тайване.[29] TSMC планирует начать массовое производство 3-нм технологического узла в 2023.[30][31][32][33][34]

В начале 2018 года ИМЕК (бельгийский Межвузовский центр микроэлектроники) и компания Cadence заявили, что они подготовили дизайны для 3-нм тестовых чипов с использованием экстремальной ультрафиолетовой (EUV) и 193-нм иммерсионной литографии.[35]

В начале 2019 года Samsung представила планы по производству 3-нм GAAFET в 2021 году, намереваясь использовать собственную структуру нанолистовых транзисторов MBCFET и обеспечивая увеличение производительности на 35 %, снижение мощности на 50 % и уменьшение площади на 45 % по сравнению с 7 нм.[36][37][38] Дорожная карта Samsung по производству полупроводников также включала продукты с 8, 7, 6, 5 и 4-нм процессами.[39][40]

В декабре 2019 года Intel объявила о планах по производству 3 нм в 2025 году.[41]

В январе 2020 года Samsung объявила о производстве первого в мире прототипа 3-нм GAAFET-процесса и заявила, что планирует массовое производство в 2021 году.[42]

В августе 2020 года TSMC объявила подробности своего 3-нм процесса N3, который является скорее обновлением 5-нм процесса N5.[43] N3 должен обеспечить на 10-15 % (1,10-1,15×) увеличение производительности или на 25-35 % (1,25-1,35×) снижение энергопотребления при увеличении плотности логики в 1,7 раза.

В июне 2022 года на технологическом симпозиуме компания TSMC поделилась подробностями своего технологического процесса N3E, запланированного к массовому производству в 2023 H2 и позволяющего: увеличить плотность логических транзисторов в 1,6 раза, физических транзисторов в 1,3 раза, увеличить производительность на 10-15 % при заявленной мощности или снизить потребление на 30-35 % при той же производительности по сравнению с TSMC N5 v1.0. Заявлена технология FinFLEX, позволяющая смешивать библиотеки с разной высотой дорожки внутри блока. TSMC также представила новые разновидности 3-нм-технологических процессов: высокоплотный вариант N3S, высокопроизводительные варианты N3P и N3X, а также N3RF для радиочастотных приложений.[44][45][46]

В июне 2022 года Samsung начала пробное производство маломощного высокопроизводительного чипа с использованием 3-нм технологического процесса с архитектурой GAA.[47][48] Согласно отраслевым источникам, Qualcomm зарезервировала часть производственных мощностей 3 нм у Samsung.[49]

25 июля 2022 года Samsung отпраздновала первую поставку 3-нм универсальных чипов для китайской компании по добыче криптовалют PanSemi.[50][51][52][53] Было показано, что недавно введенный 3-нм техпроцесс MBCFET обеспечивает на 16 % более высокую плотность транзисторов,[54] на 23 % более высокую производительность или на 45 % меньшую потребляемую мощность по сравнению с неназванным 5-нм техпроцессом.[55] Цели 3-нм техпроцесса второго поколения включают увеличение плотности транзисторов на 35 %,[54] дальнейшее снижение потребляемой мощности до 50 % или повышение производительности на 30 %.[55][54][56]

12 сентября 2023 года компания Apple заявила об использовании 3-нм мобильных процессоров Apple A17 Pro, содержащих 19 миллиардов транзисторов в титановых iPhone 15 Pro[57].

3-нм технологические процессы на рынке

Подробнее TSMC, Intel ...
Samsung[4][58][59] TSMC[2] Intel[7]
Название процесса 3GAE 3GAP N3 N3E N3P 3
Тип транзисторов MBCFET MBCFET FinFET FinFET FinFET FinFET
Плотность транзисторов (Mтр/мм2) 202,85,[58] 150[59] 195[59] 314,73,[58] 220[46] 180[46] Неизвестно Неизвестно
Размер ячейки SDRAM (мкм2) Неизвестно Неизвестно Неизвестно Неизвестно Неизвестно Неизвестно
Шаг затвора транзистора (нм) 40 Неизвестно 45 Неизвестно Неизвестно Неизвестно
Шаг межсоединения (нм) 32 Неизвестно 22 Неизвестно Неизвестно Неизвестно
Статус производства 2022: опытное производство,[4]

2022: производство,[47] 2022: отгрузка[60]

2023: производство[4] 2021: опытное производство,

2 половина 2022: производство,[2] 1 квартал 2023: коммерческая отгрузка[61]

2023: производство[2] (4 квартал — массовое производство)[62] 2024: запуск в производство[62] 2023: опытное производство,[7] 2024: производство[63]
Закрыть

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.