Название «тропическая» отдаёт честь бразильской школе[1] — пионерским работам бразильского математика венгерского происхождения Имре Шимона[порт.][2][3][4], исследовавшего тропическое полукольцо в связи с вопросами информатики и теории оптимизации[5].
Независимо от бразильской школы термин «тропическая» к тому же разделу математики с середины 1980-х годов применял В. П. Маслов. По его мысли, «идемпотентный (тропический) анализ» через посредство термодинамики описывал с экономической точки зрения европейскую колонизацию тропической Африки. Термин «идемпотентный» в научной среде не прижился, а термин «тропическая» применительно к новой математике, как более благозвучный и ёмкий, оказался очень популярным, хотя разные школы вкладывают в него разный смысл[6][7].
Тропическое полукольцо (или тропическое полуполе) — множество вещественных чисел, снабжённое операциями тропического сложения и тропического умножения
Тропический многочлен степени на плоскости — кусочно-аффинная функция вида
Аналогично, тропический многочлен в общем случае — кусочно-аффинная функция вида
Тропическая кривая на плоскости, соответствующая данному тропическому многочлену степени — граф на плоскости, вершины и рёбра (конечные и бесконечные) которого образуют множество точек негладкости функции . Рёбра этого графа считаются снабжёнными кратностями: ребро, разделяющее области линейности, отвечающие набору степеней и , снабжается кратностью, равной наибольшему общему делителю разностей и .
В частности, тропическая прямая есть объединение трёх лучей, исходящих из некоторой точки и направленных вниз, влево и вправо-вверх под 45°. Тропические прямые обладают свойствами, аналогичными свойствам обычных прямых: через любые две точки общего положения проходит ровно одна тропическая прямая, и две тропические прямые общего положения пересекаются в единственной точке.