Loading AI tools
Из Википедии, свободной энциклопедии
Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты[4][5][3].
В другом языковом разделе есть более полная статья Stochastic process (англ.). |
Пусть — измеримое пространство, множество значений параметра . Функция параметра , значениями которой являются случайные величины на пространстве элементарных событий в фазовом пространстве , называется случайным процессом в фазовом пространстве .[6]
Используемые в области исследований и прикладного применения случайных процессов классификация и терминология являются нестрогими. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».[7] В зависимости от вида множества часто применяются следующие термины.
Всевозможные совместные распределения вероятностей значений :
называются конечномерными распределениями вероятностей случайного процесса .
Случайные процессы и , принимающие значение в фазовом пространстве называются эквивалентными, если при любом эквивалентны соответствующие значения и .
При каждом фиксированном функция параметра со значениями в фазовом пространстве называется реализацией или траекто́рией случайного процесса . Случайный процесс называется непосредственно заданным, если каждый элементарный исход описывается соответствующей траекторией в функциональном пространстве всех функций на множестве со значениями в фазовом пространстве ; точнее, если и -алгебра порождается всевозможными цилиндрическими множествами , где и , а значения имеют вид , . Любому случайному процессу можно поставить в соответствие непосредственно заданный случайный процесс с теми же самыми конечномерный распределениями. Для каждого согласованного семейства конечномерных распределений вероятностей ( таких, что , являются плотными мерами в фазовом топологическом пространстве , существует непосредственно заданный случайный процесс с такими же конечномерными распределениями вероятностей.
Ковариационная функция. Пусть действительный или комплексный случайный процесс на множестве , имеющий вторые моменты: . Значения случайного процесса можно рассматривать как элементы гильбертова пространства — пространства всех случайных величин , , со скалярным произведением
Важнейшими характеристиками такого случайного процесса являются его математическое ожидание
и ковариационная функция
Вместо ковариационной функции может применятся корреляционная функция , являющуюся ковариационной функцией процесса с нулевым математическим ожиданием.
При равенстве аргументов () корреляционная функция равна дисперсии случайного процесса
Функция двух переменных и является ковариационной функцией некоторого случайного процесса , , тогда и только тогда, когда она для всех удовлетворяет следующему условию положительной определённости:
для любых и любых комплексных чисел .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.