Теоре́ма Гю́йгенса — Ште́йнера (теорема Гюйгенса, теорема Штейнера): момент инерции тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями[1]:

.
Thumb
Иллюстрация теоремы для момента площади

Теорема названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса.

Вывод

Будем рассматривать абсолютно твёрдое тело, образованное совокупностью материальных точек[2].

По определению момента инерции для и можно записать

где радиус-вектор точки тела в системе координат с началом, расположенным в центре масс, а — радиус-вектор точки в новой системе координат, через начало которой проходит новая ось.

Радиус-вектор можно расписать как сумму двух векторов:

где — радиус-вектор расстояния между старой (проходящей через центр масс) и новой осями вращения. Тогда выражение для момента инерции примет вид

Вынося за сумму, получим

По определению центра масс, для его радиус-вектора выполняется

Поскольку в системе координат с началом, расположенным в центре масс, радиус-вектор центра масс равен нулю, то равна нулю и сумма .

Тогда

откуда и следует искомая формула:

где — известный момент инерции относительно оси, проходящей через центр масс тела.

Если тело состоит не из материальных точек, а образовано непрерывно распределённой массой, то во всех приведённых выше формулах суммирование заменяется интегрированием. Ход рассуждения при этом остаётся прежним.

Следствие. Из полученной формулы очевидно, что . Поэтому можно утверждать: момент инерции тела относительно оси, проходящей через центр масс тела, является наименьшим среди всех моментов инерции тела относительно осей, имеющих данное направление.

Пример

Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню (назовём её осью ) равен

Тогда, согласно теореме Штейнера, его момент относительно произвольной параллельной оси будет равен

где  — расстояние между этой осью и осью . В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти, положив в последней формуле :

Пересчёт тензора инерции

Теорема Гюйгенса — Штейнера допускает обобщение на тензор момента инерции, что позволяет получать тензор относительно произвольной точки из тензора относительно центра масс. Пусть  — смещение от центра масс, тогда

где

 — вектор смещения от центра масс, а  — символ Кронекера.

Как видно, для диагональных элементов тензора (при ) формула имеет вид теоремы Гюйгенса — Штейнера для момента относительно новой оси.

См. также

Примечания

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.