Loading AI tools
Из Википедии, свободной энциклопедии
ε-сеть (эпсилон-сеть, ε-плотное множество) для подмножества метрического пространства есть множество из того же пространства такое, что для любой точки найдётся точка , удалённая от не более чем на ε.
Пусть множество (относительно) компактно. Зафиксируем и рассмотрим любой элемент . Если для любого , то конечная ε-сеть из одного элемента уже построена. В противном случае найдется элемент такой, что . Имеются далее две возможности. Либо для любого по крайней мере одно из чисел или меньше , и тогда конечная ε-сеть из двух элементов уже построена, либо найдется элемент такой, что , , и так далее. Покажем, что процесс построения точек оборвется после конечного числа шагов, что означает, что конечная ε-сеть будет построена. Если бы это было не так, то получилась бы последовательность , для которой при . Но тогда ни сама последовательность ни любая её подпоследовательность не может сходиться, что противоречит компактности множества . Итак, для компактного множества мы построили конечную ε-сеть, точки которой принадлежат самому множеству.
Пусть при любом существует ε-сеть для множества . Возьмем числовую последовательность , где при и для каждого построим -сеть . Рассмотрим произвольную последовательность . Так как есть -сеть для , то, каков бы ни был элемент , будем иметь, что для хотя бы одного элемента . Поэтому любой элемент попадает хотя бы в один шар , то есть все множество , а тем более вся последовательность разместится в этих шарах. Так как шаров конечное число, а последовательность бесконечна, то найдется хотя бы один шар , который будет содержать бесконечную подпоследовательность нашей последовательности. Это рассуждение можно повторить и для . Составим диагональную подпоследовательность . Покажем, что эта последовательность сходится в себе. Так как и при входят в -ю подпоследовательность, а -я подпоследовательность содержится в шаре , то при . По предположению, пространство полное. Поэтому из сходимости в себе последовательности следует её сходимость к некоторому пределу, а это и доказывает возможность выделения из любой последовательности сходящейся подпоследовательности, то есть (относительная) компактность множества [1]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.