Лучшие вопросы
Таймлайн
Чат
Перспективы

Формула Гаусса — Бонне

Теорема дифференциальной геометрии Из Википедии, свободной энциклопедии

Remove ads

Формула Гаусса — Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы.

Формулировка

Суммиров вкратце
Перспектива

Пусть  — компактное двумерное ориентированное риманово многообразие с гладкой границей . Обозначим через гауссову кривизну и через геодезическую кривизну . Тогда

где  — эйлерова характеристика .

В частности, если у нет границы, получаем

Если поверхность деформируется, то её эйлерова характеристика не меняется, в то время как гауссова кривизна может меняться поточечно. Тем не менее, согласно формуле Гаусса — Бонне, интеграл гауссовой кривизны остаётся тот же.

Remove ads

История

Частный случай этой формулы для геодезических треугольников был получен Фридрихом Гауссом[1], Пьер Оссиан Бонне[2] и Жак Бине независимо обобщили формулу на случай диска ограниченного произвольной кривой; Бине не опубликовал статьи на эту тему, но Бонне упоминает об этом на странице 129 своей Mémoire sur la Théorie Générale des Surfaces. Для неодносвязных областей формула появляется в работе Вальтера фон Дика[3]. Современная формулировка дана Вильгельмом Бляшке[4].

Remove ads

Вариации и обобщения

  • Формула Гаусса — Бонне естественно обобщается на области с кусочно-гладкой границей. Если в точке излома касательный вектор разворачивается на угол в сторону области (может быть положительное или отрицательное число), то формула обобщается до такой:
  • Обобщённая формула Гаусса — Бонне — обобщение формулы на старшие размерности.
  • Неравенство Кон-Фоссена — обобщение на некомпактные поверхности.
  • Теорема сравнения Топоногова уточняет следующее следствие формулы Гаусса — Бонне: любой треугольник на полной поверхности неотрицательной гауссовой кривизны имеет сумму углов хотя бы .

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads