Remove ads
операция над двумя векторами, результатом которой является скаляр Из Википедии, свободной энциклопедии
Скаля́рное произведе́ние (иногда называемое внутренним произведением) — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат. Используется в определении длины векторов и угла между ними.
Обычно для скалярного произведения векторов и используется одно из следующих обозначений.
В простейшем случае, а именно в случае конечномерного вещественного евклидового пространства, иногда используют «геометрическое» определение скалярного произведения ненулевых векторов и как произведения длин этих векторов на косинус угла между ними (имеется в виду наименьший угол между векторами, не превосходящий [2]) (см. рисунок справа вверху)[3]:
Равносильное определение: скалярное произведение есть произведение длины проекции первого вектора на второй и длины второго вектора, или наоборот (см. рисунок справа вверху)[4]:
Если хотя бы один из векторов нулевой, то произведение считается равным нулю[2][3].
У понятия скалярного произведения существует также большое количество обобщений для различных векторных пространств, то есть для множеств векторов с операциями сложения и умножения на скаляры. Данное выше геометрическое определение скалярного произведения предполагает предварительное определение понятий длины вектора и угла между ними. В современной математике используется обратный подход: аксиоматически определяется скалярное произведение, а уже через него — длины и углы[5]. В частности, скалярное произведение определяется для комплексных векторов, многомерных и бесконечномерных пространств, в тензорной алгебре.
Скалярное произведение и его обобщения играют чрезвычайно большую роль в векторной алгебре, теории многообразий, механике и физике. Например, работа силы при механическом перемещении равна скалярному произведению вектора силы на вектор перемещения[6][7][8].
Будем говорить, что в вещественном или комплексном векторном пространстве определено скалярное произведение, если каждой паре векторов из поставлено в соответствие число из того числового поля, над которым задано удовлетворяющее следующим аксиомам.
Заметим, что из аксиомы 2 следует, что — вещественное число. Поэтому аксиома 3 имеет смысл, несмотря на комплексные (в общем случае) значения скалярного произведения. Если аксиома 3 не выполняется, то произведение называется индефинитным, или неопределённым.
Если не только при , то произведение называется псевдоскалярным[9][10][3][11][12].
Из данных аксиом получаются следующие свойства:
Также есть свойства, связанные не с данными аксиомами:
Замечание. В квантовой физике скалярное произведение (волновых функций, которые комплекснозначны) принято определять как линейное по второму аргументу (а не по первому), соответственно, по первому аргументу оно будет инволюционо линейным. Путаницы обычно не возникает, поскольку традиционное обозначение для скалярного произведения в квантовой физике также отличается: , то есть аргументы отделяются вертикальной чертой, а не запятой, и скобки всегда угловые.
В -мерном вещественном евклидовом пространстве векторы определяются своими координатами — наборами вещественных чисел в ортонормированном базисе. Определить скалярное произведение векторов можно так[5]:
Проверка показывает, что все три аксиомы выполнены.
Например, скалярное произведение векторов и будет вычислено так:
Можно доказать[14], что эта формула равносильна определению через проекции или через косинус:
Для комплексных векторов определим аналогично[15]:
Пример (для ):
Помимо общих свойств скалярного произведения, для многомерных евклидовых векторов верно следующее:
Теорема косинусов легко выводится с использованием скалярного произведения. Пусть на сторонах треугольника находятся векторы a, b и c, первые два из которых образуют угол θ, как показано в изображении справа. Тогда, следуя свойствам и определению скалярного произведения через косинус:
В современном аксиоматическом подходе уже на основе понятия скалярного произведения векторов вводятся следующие производные понятия[17]:
Длина вектора, под которой обычно понимается его евклидова норма[17]:
(термин «длина» обычно применяется к конечномерным векторам, однако в случае вычисления длины криволинейного пути часто используется и в случае бесконечномерных пространств).
Углом между двумя ненулевыми векторами евклидова пространства (в частности, евклидовой плоскости) называется число, косинус которого равен отношению скалярного произведения этих векторов к произведению их длин (норм)[18]:
Данные определения позволяют сохранить формулу: и в общем случае. Корректность формулы для косинуса гарантирует неравенство Коши — Буняковского[19]:
Для любых элементов векторного пространства со скалярным произведением выполняется неравенство: |
В случае, если пространство является псевдоевклидовым, понятие угла определяется лишь для векторов, не содержащих изотропных прямых внутри образованного векторами сектора. Сам угол при этом вводится как число, гиперболический косинус которого равен отношению модуля скалярного произведения этих векторов к произведению их длин (норм):
Скалярное произведение было введено У. Гамильтоном в 1846 году[20] одновременно с векторным произведением в связи с кватернионами — соответственно, как скалярная и векторная часть произведения двух кватернионов, скалярная часть которых равна нулю[21].
В пространстве измеримых интегрируемых с квадратами на некоторой области Ω вещественных или комплексных функций можно ввести положительно определённое скалярное произведение:
При использовании неортонормированных базисов скалярное произведение выражается через компоненты векторов с участием метрического тензора[22] :
При этом сама метрика (говоря точнее, её представление в данном базисе) так связана со скалярными произведениями базисных векторов :
Аналогичные конструкции скалярного произведения можно вводить и на бесконечномерных пространствах, например, на пространствах функций:
где К — положительно определённая, в первом случае симметричная относительно перестановки аргументов (при комплексных x — эрмитова) функция (если нужно иметь обычное симметричное положительно определённое скалярное произведение).
Простейшим обобщением конечномерного скалярного произведения в тензорной алгебре является свёртка по повторяющимся индексам.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.