Loading AI tools
Из Википедии, свободной энциклопедии
Общий метод решета числового поля (англ. general number field sieve, GNFS) — метод факторизации целых чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой[1]
Метод является обобщением специального метода решета числового поля: тогда как последний позволяет факторизовать числа только некоторого специального вида, общий метод работает на множестве целых чисел, за исключением степеней простых чисел (которые факторизуются тривиально извлечением корней).
В 1988 году английский математик Джон Поллард[англ.] описал новый метод факторизации целых чисел специальной формы (), проиллюстрировав его разложением седьмого числа Ферма . В отличие от метода квадратичного решета, в котором просеивание выполняется в кольце всех целых чисел, в методе предлагалось использовать кольцо целых чисел над числовым полем . Рукопись была приложена к письму, адресованному Эндрю Одлыжко[англ.], также копии получили Ричард Брент, Джон Бриллхарт[англ.], Хендрик Ленстра, Клаус Шнорр[англ.] и Х. Суяма. В этом письме Поллард предположил, что возможно этот метод может быть использован для разложения девятого числа Ферма.[2]
В 1990 году А. Ленстра, Х. Ленстра, Марк Манассе и Поллард описали первую крупномасштабную реализацию нового метода с некоторыми усовершенствованиями. Они показали, что на числах специального вида алгоритм работает быстрее, чем все остальные известные методы факторизации. Также в работе обсуждается идея Джо Бухлера и Карла Померанса об усовершенствовании метода для разложения любых целых чисел и приводятся наброски решения этой задачи.[3]
Позднее Леонард Макс Адлеман предложил использовать квадратичный характер для нахождения квадратов в числовом поле. Это предоставило альтернативное решение проблемы, поднятой Бухлером и Померансом, и улучшило предположительное время работы решета числового поля в применении к числам не специального вида.[4]
В том же году А. Ленстра, Х. Ленстра, Манассе и Поллард представили разложение девятого числа Ферма с помощью метода числового поля. В соответствующей работе обсуждаются многие детали этого разложения.[5]
Наконец, в работе «Факторизация целых чисел с помощью решета числового поля» Бухлер, Х. Ленстра и Померанс описали метод решета числового поля в применении к числам, которые не обязательно имеют специальный вид.[6] Эта реализация алгоритма содержала шаг, предполагающий вычисления с использованием чрезвычайно больших чисел. Джин-Марк Кувейгнес в своей работе описал способ обойти это.[7]
Итоги раннего развития метода подвёл сборник статей под редакций А. Ленстры и Х. Ленстры.[8] В том числе сборник включал статью Бернштейна и А. Ленстры, описывающую очередную улучшенную реализацию алгоритма. Статья вошла в сборник под заголовком «Общий метод решета числового поля».[9]
Метод решета числового поля (как специальный, так и общий) можно представить как усовершенствование более простого метода — метода рационального решета либо метода квадратичного решета. Подобные им алгоритмы требуют нахождения гладких чисел порядка . Размер этих чисел экспоненциально растёт с ростом . Метод решета числового поля, в свою очередь, требует нахождения гладких чисел субэкспоненциального относительно размера. Благодаря тому, что эти числа меньше, вероятность того, что число такого размера окажется гладким, выше, что и является причиной эффективности метода решета числового поля. Для достижения ускорения вычислений в рамках метода проводятся в числовых полях, что усложняет алгоритм, по сравнению с более простым рациональным решетом.
Пусть — нечетное составное число, которое требуется факторизовать.
Выберем степень неприводимого многочлена (при не будет выигрыша в сравнении с методом квадратичного решета).
Выберем целое такое, что , и разложим n по основанию :
Свяжем с разложением (1) неприводимый в кольце полиномов с целыми коэффициентами многочлен
Определим полином просеивания как однородный многочлен от двух переменных и :
Определим второй полином и соответствующий однородный многочлен .
Выберем два положительных числа и , определяющих область просеивания (англ. sieve region):
Пусть — корень . Рассмотрим кольцо полиномов . Определим множество, называемое алгебраической факторной базой , состоящее из многочленов первого порядка вида с нормой (2), являющейся простым числом. Эти многочлены — простые неразложимиые в кольце алгебраических целых поля . Ограничим абсолютные значения норм полиномов из константой .
Определим рациональную факторную базу , состоящую из всех простых чисел, ограниченных сверху константой .
Определим множество , называемое факторной базой квадратичных характеров. Это множество полиномов первого порядка , норма которых - простое число. Должно выполняться условие .
Выполним просеивание многочленов по факторной базе и целых чисел по факторной базе . В результате получим множество , состоящее из гладких пар , то есть таких пар , что НОД(a,b) = 1, полином и число и раскладываются полностью по и соответственно.
Найдём такое подмножество , что
Определим многочлен
где — производная
Многочлен является полным квадратом в кольце полиномов . Пусть тогда есть корень из и — корень из .
Строим отображение , заменяя полином числом . Это отображение является кольцевым гомоморфизмом кольца алгебраических целых чисел в кольцо , откуда получаем соотношение:
Пусть . Найдём пару чисел таких, что . Тогда найдём делитель числа , вычисляя НОД(n, A ± B), как это делается, например, в методе квадратичного решета.
Подробное описание алгоритма можно найти, например, в [11] и [12].
До 2007 года наиболее успешной реализацией считалось программное обеспечение, разработанное и распространяемое Центром математики и информатики (CWI) в Нидерландах, распространявшееся под закрытой лицензией.
В 2007 году Джейсон Пападопулос[англ.] реализовал часть алгоритма, занимающуюся окончательной обработкой данных, так, что она работала быстрее версии CWI. Этот код входит в библиотеку msieve. Msieve написана Пападопулосом и другими участниками проекта на C и включает в себя реализации общего метода решета числового поля и квадратичного решета. Распространяется на правах общественного достояния. Поддерживает распределенные вычисления. Последняя версия msieve может быть найдена на сайте автора.
Некоторые другие реализации общего метода решета числового поля:
В 1996 году с помощью алгоритма было получено разложение числа RSA-130. Позднее с помощью метода были факторизованы, например, числа RSA-140[13], и RSA-155[14]. На разложение последнего потребовалось более 8000 mips лет. 9 мая 2005 года Ф. Бар, М. Бом, Йенс Франке и Т. Клейнжунг объявили, что они разложили число RSA-200, используя общий метод решета числового поля.
В 2009 году группе учёных из Швейцарии, Японии, Франции, Нидерландов, Германии и США удалось успешно вычислить данные, зашифрованные при помощи криптографического ключа стандарта RSA длиной 768 битов.[15] Как следует из описания работы, вычисление значений ключа осуществлялось общим методом решета числового поля. По словам исследователей, после их работы в качестве надежной системы шифрования можно рассматривать только RSA-ключи длиной 1024 бита и более.[16]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.