Обратимый элемент

в математике - элемент, у которого существует обратный Из Википедии, свободной энциклопедии

Обратимый элемент — элемент кольца с единицей, для которого существует обратный элемент относительно умножения. Другое название — делитель единицы. Также, в основном в переводах с английского, встречается название единица, что может вызывать путаницу с единичным элементом (в английских источниках используются два разных термина: unit element и Identity element[1]).

Иначе говоря, элемент кольца называется обратимым, если существует элемент , такой что

где  — единичный элемент кольца.

Множество всех обратимых элементов кольца образует мультипликативную группу, называемую группой обратимых элементов (реже группой единиц). Эта группа всегда непустая, так как содержит как минимум единицу кольца.

Ассоциированные элементы

Элементы называют ассоциированными и пишут , если и . В случае, когда является областью целостности, определение обычно заменяется на равносильное через существование такого обратимого элемента , что .

Группа единиц

Обратимые элементы кольца образуют группу по умножению, группу единиц кольца . Другие общепринятые обозначение — , и (от немецкого Einheit).

В коммутативном кольце группа обратимых элементов кольца действует стандартным образом на посредством умножения. Орбиты этих действий называются множествами ассоциированных элементов.

Можно показать, что  — это функтор из категории колец в категорию групп: каждый гомоморфизм колец порождает гомоморфизм групп , поскольку отображает единицы в единицы.

Кольцо является телом тогда и только тогда, когда .

Примеры

Примечания

Литература

Wikiwand - on

Seamless Wikipedia browsing. On steroids.