Loading AI tools
Из Википедии, свободной энциклопедии
Оценка Чернова даёт экспоненциально убывающие оценки вероятности больших отклонений сумм независимых случайных величин. Эти оценки являются более точными, чем оценки, полученные с использованием первых или вторых моментов, такие как неравенство Маркова или неравенство Чебышёва, которые дают лишь степенной закон убывания. Вместе с тем оценка Чернова требует, чтобы случайные величины были независимы в совокупности — условие, которое ни неравенство Маркова, ни неравенство Чебышёва не требуют, хотя неравенство Чебышёва требует попарную независимость случайных величин.
Оценка Чернова имеет отношение к неравенствам Бернштейна[англ.] и неравенству Хёфдинга, которые ей исторически предшествуют.
Основной случай оценки Чернова для случайной величины достигается применением неравенства Маркова к etX [1]. Для каждого
Когда X является суммой n случайных величин X1, ... ,Xn, для любого
В частности, оптимизируя по t и предполагая, что Xi независимы, мы получаем
Аналогично
и, таким образом,
Конкретные значения оценок Чернова получаются вычислением для конкретных величин .
Пусть X1, ..., Xn — независимые случайные величины Бернулли, сумма которых X, и каждая равна 1 с вероятностью . Для переменной Бернулли верно:
следовательно,
Для всякого при и получаем
и общий случай оценки Чернова даёт[2]:64
Вероятность одновременного свершения более чем n/2 событий {Xk = 1} в точности равна:
Нижнюю оценку этой вероятности можно вычислить с помощью неравенства Чернова:
В самом деле, обозначая μ = np, мы получаем мультипликативную форму оценки Чернова (см. ниже или Corollary 13.3 in Sinclair's class notes)[3]:
Этот результат допускает разнообразные обобщения, как отмечено ниже. Можно отметить несколько форм оценок Чернова: исходную аддитивную форму (даёт оценку для абсолютной ошибки) или более практичную мультипликативную форму (ограничивает ошибку по отношению к среднему).
Следующая Теорема была доказана Василием Хёфдингом[4].
Более простая оценка получается ослаблением этой теоремы, используя неравенство D(p + ε || p) ≥ 2ε2, которое следует из выпуклости D(p + ε || p) и того факта, что
Этот результат является частным случаем неравенства Хёфдинга. В некоторых случаях используются оценки
более сильные при p < 1/8.
Аналогичным образом можно показать, что для любого
На практике вышеприведённая формула часто оказывается громоздкой[2], поэтому используются более слабые, но удобные оценки
которые получаются с помощью неравенства из списка логарифмических неравенств[5]. Или ещё более слабое неравенство
Оценки Чернова имеют приложения в уравновешивании множеств и маршрутизации пакетов в разреженных сетях.
Проблема уравновешения множества возникает при проектировании статистического эксперимента. Как правило, при проектировании статистического эксперимента с заданными в этом эксперименте свойствами участников нам необходимо разделить участников на две непересекающиеся группы так, чтобы каждое свойство было, насколько это возможно, сбалансировано между двумя группами. См. также информацию в Probability and Computing: Randomized Algorithms and Probabilistic Analysis Архивная копия от 16 апреля 2021 на Wayback Machine.
Оценки Чернова также используются для достижения жестких границ в задачах маршрутизации с использованием перестановок. Это уменьшает перегруженность при маршрутизации в разреженных сетях. См. подробнее в Probability and Computing: Randomized Algorithms and Probabilistic Analysis Архивная копия от 16 апреля 2021 на Wayback Machine.
Также оценки Чернова находят применение в теории вычислительного обучения для доказательства того, что обучающий алгоритм аппроксимационно по вероятности корректен. То есть с высокой вероятностью этот алгоритм имеет малую ошибку на достаточно большом наборе тренировочных данных[6].
Оценки Чернова могут быть эффективно использованы для оценки "уровня робастности" приложения/алгоритма посредством исследования его пространства возмущений при помощи рандомизации.[7]
Рудольф Альсведе[англ.] и Андреас Винтер[англ.] использовали оценки Чернова для случайных величин с матричными значениями.[8] Следующую версию неравенства можно найти в работе Троппа.[9]
Пусть M1, ..., Mt — случайные величины с матричными значениями такие, что и . Обозначим оператор нормы матрицы . Если неравенство почти наверное выполнено для всех , то для каждого ε > 0
Чтобы заключить, что отклонение от 0 ограничено величиной ε с высокой вероятностью, нам нужно выбрать (количество образцов) пропорциональным логарифму . В общем случае зависимость от неочевидна: например, возьмём диагональную случайную матрицу знаков размерности . Оператор нормы суммы независимых образцов является в точности максимальным отклонением среди независимых случайных блужданий длины . Для того, чтобы достичь фиксированную границу максимального отклонения с постоянной вероятностью, должно логарифмически возрастать вместе с .[10]
Следующая теорема получена в предположении, что имеет низкий ранг, для того, чтобы избежать зависимости от размерности.
Пусть 0 < ε < 1 и ─ случайная симметрическая вещественная матрица с и почти наверное. Предположим, что каждый элемент носителя имеет ранг самое большее . Положим
Если почти наверное, то
где M1, ..., Mt — это независимые одинаково распределенные копии .
Анкит Гарг, Инь Тат Ли, Чжао Сонг и Нихил Шривастава[англ.][11] получили оценки типа Чернова для сумм матричнозначных случайных величин, семплированных с помощью случайного блуждания экспандера.
Расмус Кинг и Чжао Сонг[12] получили оценки типа Чернова для сумм матриц лапласианов случайных деревьев.
Следующий вариант оценки Чернова можно использовать для оценки вероятности того, что большинство популяции станет в выборке меньшинством и наоборот.[13]
Предположим, имеется общая популяция и подпопуляция . Обозначим относительный размер подпопуляции () через .
Допустим, мы выбираем целое кисло и случайную выборку размера . Обозначим относительный размер подпопуляции () через .
Тогда для каждой доли :
В частности, если ─ это большинство в (то есть, ), то мы можем оценить сверху вероятность того, что останется большинством в взяв [14]:
Эта оценка, разумеется, не является точной. Например, если , то мы получаем тривиальную оценку .
Пусть q = p + ε. Взяв a = nq в формуле (1), получаем:
Теперь, зная что Pr(Xi = 1) = p, Pr(Xi = 0) = 1 − p, имеем
Таким образом, мы можем легко вычислить минимум, используя технику дифференцирования:
Приравнивая полученное выражение к нулю и разрешая уравнение относительно , получаем
так что
Следовательно,
Поскольку q = p + ε > p, то мы видим, что t > 0, так что наша оценка удовлетворяется по t. Получив t, мы можем вернуться в предыдущие уравнения и найти
Теперь мы имеем желаемый результат, поскольку
Для завершения доказательства в симметрическом случае мы попросту определим случайную величину Yi = 1 − Xi, применим к ней точно такое же доказательство и присоединим результат к нашей оценке.
Положим Pr(Xi = 1) = pi. Согласно формуле (1),
Третья строчка следует из того, что принимает значение et с вероятностью pi и значение 1 с вероятностью 1 − pi. Это идентично вычислениям выше в доказательстве аддитивной формы.
Переписав как и вспомнив, что (если x > 0, то неравенство строгое), мы положим . Тот же результат можно получить, напрямую заменяя a в уравнении для оценки Чернова на (1 + δ)μ.[15]
Таким образом,
Если мы просто положим t = ln(1 + δ), так что t > 0 для δ > 0, то сможем подставить это в последнее выражение и найти
что и требовалось доказать.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.