Remove ads
раздел символической логики изучающий сложные высказывания, составленные из простых Из Википедии, свободной энциклопедии
Логика высказываний, пропозициональная логика (лат. propositio — «высказывание»[1]) или исчисление высказываний[2], также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные[3].
Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений[2].
Язык логики высказываний (пропозициональный язык[4]) — формализованный язык, предназначенный для анализа логической структуры сложных высказываний[1].
Исходные символы, или алфавит языка логики высказываний[5]:
Символ | Значение |
---|---|
Знак отрицания | |
или & | Знак конъюнкции («логическое И») |
Знак дизъюнкции («логическое ИЛИ») | |
Знак импликации | |
Пропозициональная формула — слово языка логики высказываний[7], то есть конечная последовательность знаков алфавита, построенная по изложенным ниже правилам и образующая законченное выражение языка логики высказываний[1].
Индуктивное определение множества формул логики высказываний:[4][1]
Других формул в языке логики высказываний нет.
Форма Бэкуса — Наура, определяющая синтаксис логики высказываний, имеет запись:
Заглавные латинские буквы , и другие, которые употребляются в определении формулы, принадлежат не языку логики высказываний, а его метаязыку, то есть языку, который используется для описания самого языка логики высказываний. Содержащие метабуквы выражения , и другие — не пропозициональные формулы, а схемы формул. Например, выражение есть схема, под которую подходят формулы , и другие[1].
Относительно любой последовательности знаков алфавита языка логики высказываний можно решить, является она формулой или нет. Если эта последовательность может быть построена в соответствии с пп. 1—3 определения формулы, то она формула, если нет, то не формула[1].
Поскольку в построенных по определению формулах оказывается слишком много скобок, иногда и не обязательных для однозначного понимания формулы, существует соглашение о скобках, по которому некоторые из скобок можно опускать. Записи с опущенными скобками восстанавливаются по следующим правилам.
Когда говорят о длине формулы, имеют в виду длину подразумеваемой (восстанавливаемой) формулы, а не сокращённой записи.
Например: запись означает формулу , а её длина равна 12.
Как и любой другой формализованный язык, язык логики высказываний можно рассматривать как множество всех слов, построенных с использованием алфавита этого языка[8]. Язык логики высказываний можно рассматривать как множество всевозможных пропозициональных формул[4]. Предложения естественного языка могут быть переведены на символический язык логики высказываний, где они будут представлять собой формулы логики высказываний. Процесс перевода высказывания в формулу языка логики высказываний называется формализацией. Обратный процесс подстановки вместо пропозициональных переменных конкретных высказываний называется интерпретацией[9].
Этот раздел не завершён. |
Для улучшения этой статьи желательно:
|
Одним из возможных вариантов (гильбертовской) аксиоматизации логики высказываний является следующая система аксиом:
;
;
;
;
;
;
;
;
;
;
.
вместе с единственным правилом:
Теорема корректности исчисления высказываний утверждает, что все перечисленные выше аксиомы являются тавтологиями, а с помощью правила modus ponens из истинных высказываний можно получить только истинные. Доказательство этой теоремы тривиально и сводится к непосредственной проверке. Куда более интересен тот факт, что все остальные тавтологии можно получить из аксиом с помощью правила вывода — это так называемая теорема полноты логики высказываний.
Этот раздел не завершён. |
Для улучшения этой статьи желательно:
|
Основной задачей логики высказываний является установление истинностного значения формулы, если даны истинностные значения входящих в неё переменных. Истинностное значение формулы в таком случае определяется индуктивно (с шагами, которые использовались при построении формулы) с использованием таблиц истинности связок[10].
Пусть — множество всех истинностных значений , а — множество пропозициональных переменных. Тогда интерпретацию (или модель) языка логики высказываний можно представить в виде отображения
которое каждую пропозициональную переменную сопоставляет с истинностным значением [10].
Оценка отрицания задаётся таблицей:
Значения двухместных логических связок (импликация), (дизъюнкция) и (конъюнкция) определяются так:
Этот раздел не завершён. |
Для улучшения этой статьи желательно:
|
Формула является тождественно истинной, если она истинна при любых значениях входящих в неё переменных (то есть, при любой интерпретации)[11]. Далее перечислены несколько широко известных примеров тождественно истинных формул логики высказываний:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.