Remove ads
кривая, которую можно получить как пересечение конуса и плоскости Из Википедии, свободной энциклопедии
Кони́ческое сече́ние, или ко́ника[1], — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.
Конические сечения могут быть получены как пересечение плоскости с двусторонним конусом
Здесь
Если плоскость проходит через начало координат, то получается вырожденное сечение. В невырожденном случае,
Уравнение кругового конуса квадратично, стало быть, все конические сечения являются квадриками плоскости, в которой они лежат. Также все квадрики плоскости являются коническими сечениями (хотя две параллельные прямые образуют вырожденную квадрику, которая не может быть получена как сечение конуса, но она может быть получена как сечение цилиндра — вырожденного конуса, и обычно считается «вырожденным коническим сечением»).
Конические сечения были известны ещё математикам Древней Греции.
Наиболее полным сочинением, посвящённым этим кривым, были «Конические сечения» Аполлония Пергского (около 200 г. до н. э.). По-видимому он первым описал фокусы эллипса и гиперболы[2]:41.
Папп Александрийский первым описал фокус параболы и вывел общее уравнение для конического сечения как геометрическое место точек, для которых отношение расстояний до точки фокуса и директрисы постоянно[2]:48.
Все невырожденные конические сечения, кроме окружности, можно описать следующим способом:
Выберем на плоскости точку и прямую и зададим вещественное число . Тогда геометрическое место точек, для которых расстояние до точки и до прямой отличается в раз, является коническим сечением. Точка называется фокусом конического сечения, прямая — директрисой, число — эксцентриситетом.
В зависимости от эксцентриситета, получится:
Для окружности полагают (хотя фактически при ГМТ является только точка ).
Эксцентриситет связан с параметрами конуса и расположением секущей плоскости относительно оси конуса следующим соотношением[3]:46,47:
здесь — угол наклона секущей плоскости к оси конуса, — угол между образующей и осью конуса, равный половине угла раствора конуса. Из этой формулы видно, что, пересекая данный конус плоскостью, можно получить эллипс с любым эксцентриситетом, параболу, а гиперболу можно получить лишь такую, эксцентриситет которой не превышает . Это максимальное значение достигается при сечении данного конуса плоскостью, параллельной его оси.
Некоторые важные свойства конических сечений получаются при рассмотрении двух шаров, касающихся конического сечения и конуса — шаров Данделена. Например, с их помощью устанавливается геометрический смысл фокуса, директрисы и эксцентриситета конического сечения[3]:46,47.
Зафиксируем на плоскости окружность . Любой точке плоскости можно сопоставить её поляру относительно — и наоборот, любой прямой можно сопоставить её полюс. Полученное преобразование, сопоставляющее точкам прямые, а прямым точки, называется полярным соответствием и является инволюцией, образы точек и прямых при таком преобразовании называются двойственными образами. Полярное соответствие может быть определено не только относительно окружности, но и относительно любой коники — в таком случае оно будет представлять собой композицию проективного преобразования, переводящего эту конику в окружность, полярного соответствия относительно этой окружности и обратного проективного преобразования.
Двойственным образом гладкой кривой будем называть множество двойственных образов всех касательных к этой кривой. Тогда верно, что двойственным образом коники также является коника. Таким образом, некоторые утверждения, например, теоремы Паскаля и Брианшона, являются полярно двойственными друг другу.
В декартовых координатах конические сечения описываются общим квадратным многочленом:
Иначе говоря, конические сечения являются кривыми второго порядка. Знак дискриминанта
определяет тип конического сечения.
В полярных координатах , с центром в одном из фокусов и нулевым направлением вдоль главной оси, коническое сечение представляется уравнением
где е обозначает эксцентриситет, а l фокальный параметр.
В рамках классической механики траектория движения материальной точки или жесткого сферически симметричного тела в поле силы, подчиняющейся закону обратных квадратов, является одним из конических сечений — параболой, гиперболой, эллипсом (в частности кругом) или прямой.
В случае, когда такая сила является силой притяжения, возможны (в зависимости от начальных условий) все эти траектории; если же это сила отталкивания, то возможны только прямые и гиперболы.
Траектория движения тела (или его центра массы в случае любого неточечного тела) в поле однородной постоянной силы[5] в рамках классической механики — точная парабола.
Этот вывод справедлив не только для фиксированного (неподвижного) положения центра силы[6], но и для взаимодействия двух точечных или сферических тел сравнимой массы[7].
Второе утверждение в рамках классической механики является точным (на практике настолько точным, насколько точно сила взаимодействия удовлетворяет закону обратных квадратов и отсутствуют другие силы).
Для более чем двух взаимодействующих тел всё это, вообще говоря, неверно (то есть орбиты могут быть точными коническими сечениями точно только в редких частных случаях — при подобранных специальных начальных условиях), однако может быть хорошим приближением в случае одного массивного центрального тела и сравнительно слабо взаимодействующих гораздо менее массивных остальных тел, в частности для Солнечной системы в целом, за исключением малых небесных тел, которые иногда слишком сильно сближаются с планетами.
Физически ситуация может относиться как к взаимодействию точечных (имеющих очень малый размер по сравнению с расстоянием до других тел) или сферических тел под действием сил гравитации, подчиняющихся закону всемирного тяготения (этот закон является довольно хорошим приближенным описанием реального гравитационного взаимодействия в большинстве случаев, с которыми мы сталкиваемся в пределах Солнечной системы) и/или электростатических сил, подчиняющихся закону Кулона[8].
Для того, чтобы траектории тел были коническими сечениями[9] важно, чтобы соблюдались условия на количество и/или массы взаимодействующих тел, описанные выше, а также чтобы в идеале отсутствовали (практически же были пренебрежимо малыми, или, иногда, хорошо скомпенсированными) все другие силы, как, например, силы аэродинамического сопротивления (для этого, например, нужен достаточная разреженность среды, вакуум), потери на излучение (в случае движения электрически заряженных тел они могут быть существенны, в рамках ньютоновской гравитации такие потери всегда равны нулю, однако в реальности потери на излучение гравитационных волн могут быть заметны при взаимодействии близких массивных и быстро движущихся объектов). Кроме обычного аэродинамического сопротивления, могут быть существенными такие силы, как сила давления и сила сопротивления, обусловленные солнечным ветром.
При движении космических тел, как правило, эти условия выполняются по крайней мере в какой-то степени, так что коническое сечение является приемлемым, а часто и очень хорошим, приближением реальной орбиты (в течение какого-то времени).
В Солнечной системе орбиты планет — с достаточно хорошим приближением эллипсы (отклонение от точной эллиптичности больше всего у Меркурия), траектории комет — эллипсы, гиперболы[10]; нередко траектории комет «почти параболические»[11] (см. также Небесная механика).
Траектория полёта пушечного ядра в гравитационном поле Земли без учёта влияния воздуха — дуга эллипса, близкого к параболе (поскольку скорость ядра гораздо меньше первой космической).
В небольшой (по сравнению с радиусом Земли) лаборатории гравитационное поле можно считать однородным и постоянным. Если в такой лаборатории достаточно хорошо откачать воздух, то траектория камня, брошенного в ней, будет практически точной параболой (или прямой)[12]. При обычных условиях (присутствие воздуха) траектории брошенных тел, вообще говоря, достаточно сильно отличаются от парабол и прямых (за исключением строго вертикального броска), однако при малых скоростях и небольших расстояниях полёта могут быть довольно близки к параболе.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.