Loading AI tools
Из Википедии, свободной энциклопедии
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Для случая последовательности сумм независимых случайных величин, имеющих одинаковое распределение с двумя значениями теорема была доказана А. Я. Хинчиным в 1924 году[1][2]. Первую теорему общего типа доказал А. Н. Колмогоров в 1929 году[3][4].
Пусть — независимые одинаково распределённые случайные величины с нулевым математическим ожиданием и единичной дисперсией. Пусть Тогда почти наверное:
где — натуральный логарифм, — верхний предел, — нижний предел.
Обобщения закона повторного логарифма Колмогорова для последовательностей независимых ограниченных неодинаково распределенных случайных величин были исследованы В. Феллером[5]. Обобщение для функциональной сходимости дал Ф. Штрассен[6]. Им же доказано[7], что если — последовательность независимых случайных величин, имеющих одинаковое распределение с бесконечной дисперсией, то
Закон повторного логарифма занимает промежуточное положение между законом больших чисел и центральной предельной теоремой. Закон больших чисел существует в двух вариантах — слабом и усиленном, они утверждают, что суммы с делителем стремятся к нулю, соответственно по вероятности и почти наверное:
Центральная предельная теорема утверждает, что суммы с делителем сходятся к стандартному нормальному распределению, и эта последовательность сумм не сходится к какой-либо конкретной величине ни по вероятности, ни почти наверное, а бесконечно блуждает.
Делитель в законе повторного логарифма приводит к разным результатам для сходимости по вероятности и почти наверное:
Таким образом, хотя величина будет меньше, чем любое заданное с вероятностью, стремящейся к единице, она будет бесконечное число раз приближаться сколь угодно близко к любой точке отрезка почти наверное.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.