Дзета-функция Римана

аналитическая функция, доказательство которой является одной из долгих проблем математики. Из Википедии, свободной энциклопедии

Дзета-функция Римана

Дзе́та-фу́нкция Ри́мана — функция комплексного переменного , при , определяемая с помощью ряда Дирихле:

Thumb
График дзета-функции Римана (аналитического продолжения ряда Дирихле) на действительной оси. Слева от нуля масштаб шкалы значений функции увеличен в 100 раз для наглядности

В комплексной полуплоскости этот ряд сходится, является аналитической функцией от и допускает аналитическое продолжение на всю комплексную плоскость, за исключением особой точки .

Дзета-функция Римана играет очень важную роль в аналитической теории чисел, имеет приложения в теоретической физике, статистике, теории вероятностей.

В частности, если будет доказана или опровергнута до сих пор ни доказанная, ни опровергнутая гипотеза Римана о положении всех нетривиальных нулей дзета-функции на прямой комплексной плоскости , то многие важные теоремы о простых числах, опирающиеся в доказательстве на гипотезу Римана, станут либо истинными, либо ложными.

Thumb
Дзета-функция Римана для вещественных s > 1

Тождество Эйлера

Суммиров вкратце
Перспектива

В области также верно представление в виде бесконечного произведения (тождество Эйлера)

Это равенство представляет собой одно из основных свойств дзета-функции.

Свойства

Thumb
Дзета-функции Римана в комплексной плоскости
  • Если взять асимптотическое разложение при частичных сумм вида
    ,

справедливую для , она же останется верной и для всех , кроме тех, для которых (это тривиальные корни дзета-функции). Из этого можно получить следующие формулы для :

  1. , при , кроме ;
  2. , при , кроме или ;
  3. , при , кроме , или и т. д.
  • Существуют явные формулы для значений дзета-функции в чётных целых точках:
    , где  — число Бернулли.
В частности, (ряд обратных квадратов),
  • Кроме того, получено значение , где  — полигамма-функция;
  • Про значения дзета-функции в нечётных целых точках известно мало: предполагается, что они являются иррациональными и даже трансцендентными, но пока (2019 г.) доказана только лишь иррациональность числа ζ(3) (Роже Апери, 1978), а также то, что среди значений ζ(5), ζ(7), ζ(9), ζ(11) есть хотя бы ещё одно иррациональное[1].
  • При
    • , где  — функция Мёбиуса
    • , где  — функция Лиувилля
    • , где  — число делителей числа
    • , где  — число простых делителей числа
  • При
  • имеет в точке простой полюс с вычетом, равным 1.
  • При натуральных верна следующая формула:
    • [2]
  • Дзета-функция при удовлетворяет уравнению:
    ,
где  — гамма-функция Эйлера. Это уравнение называется функциональным уравнением Римана, хотя последний и не является ни его автором, ни тем, кто его первым строго доказал[3].
  • Для функции
    ,
введённой Риманом для исследования и называемой кси-функцией Римана, это уравнение принимает вид:
.

Нули дзета-функции

Как следует из функционального уравнения Римана, в полуплоскости функция имеет лишь простые нули в отрицательных чётных точках: . Эти нули называются «тривиальными» нулями дзета-функции. Далее, при вещественных . Следовательно, все «нетривиальные» нули дзета-функции являются комплексными числами. Кроме того, они обладают свойством симметрии относительно вещественной оси и относительно вертикали и лежат в полосе , которая называется критической полосой. Согласно гипотезе Римана, они все находятся на критической прямой .

Представления конкретных значений

Суммиров вкратце
Перспектива

ζ(2)

Из формулы , где число Бернулли, получаем, что .

Другие представления в виде рядов

Ниже приведены другие ряды, сумма которых равна [4]:

Существуют также представления для вида формулы Бэйли — Боруэйна — Плаффа, позволяющие в некоторых системах счисления вычислять -й знак его записи без вычисления предыдущих[4]:

Интегральные представления

Дзета-функция представима в виде интеграла при  :

Ниже приведены формулы для с участием интегралов, полученные с использованием дзета-функции Римана[5][6][7]:

Цепные дроби

Некоторые из представлений в виде цепных дробей были получены в связи с аналогичными представлениями для константы Апери , дающими возможность доказать её иррациональность.

[8]
[8]
[9][неавторитетный источник]
[10]

ζ(3)

Одним из наиболее коротких представлений является , получаем, что , где полигамма-функция.

Интегральные представления

Цепные дроби

Цепная дробь для константы Апери (последовательность A013631 в OEIS) выглядит следующим образом:

Первую обобщённую цепную дробь для константы Апери, имеющую закономерность, открыли независимо Стилтьес и Рамануджан:

Она может быть преобразована к виду:

Апери смог ускорить сходимость цепной дроби для константы:

[11][10]

ζ(4)

Из формулы , где число Бернулли, получаем, что .

ζ(5)

Одним из наиболее коротких представлений является , получаем, что , где полигамма-функция.

Обобщения

Суммиров вкратце
Перспектива

Существует довольно большое количество специальных функций, связанных с дзета-функцией Римана, которые объединяются общим названием дзета-функции и являются её обобщениями. Например:

которая совпадает с дзета-функцией Римана при q = 1 (так как суммирование ведётся от 0, а не от 1).
  • Полилогарифм:
который совпадает с дзета-функцией Римана при z = 1.
которая совпадает с дзета-функцией Римана при z = 1 и q = 1 (так как суммирование ведётся от 0, а не от 1).
  • Квантовый аналог (q-аналог).

Аналогичные конструкции

В теории гауссовых интегралов по траекториям возникает задача регуляризации детерминантов. Одним из подходов к её решению является введение дзета-функции оператора[12]. Пусть  — неотрицательно определённый самосопряжённый оператор, имеющий чисто дискретный спектр . Причём существует вещественное число , такое, что оператор имеет след. Тогда дзета-функция оператора определяется для произвольного комплексного числа , лежащего в полуплоскости , может быть задана сходящимся рядом

Если заданная таким образом функция допускает аналитическое продолжение на область, содержащую некоторую окрестность точки , то на её основе можно определить регуляризованный детерминант оператора в соответствии с формулой

История

Как функция вещественной переменной дзета-функция была введена в 1737 году Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась Дирихле и, особенно успешно, Чебышёвым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного.

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.