Loading AI tools
геометрическая фигура, являющаяся n-мерным обобщением треугольника. Из Википедии, свободной энциклопедии
Си́мплекс или n-ме́рный тетра́эдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника.
Симплекс (точнее, n-симплекс, где число n называется размерностью симплекса) — это выпуклая оболочка n + 1 точки аффинного пространства (размерности n или больше), которые предполагаются аффинно независимыми (то есть не лежат в подпространстве размерности n − 1). Эти точки называются вершинами симплекса[1][2].
Симплекс может быть охарактеризован как множество всевозможных выпуклых комбинаций своих вершин :
Стандартный -симплекс — это подмножество арифметического пространства , определяемое как[9]
Его вершинами являются точки[9]
Существует каноническое взаимно-однозначное отображение стандартного -симплекса в любой другой -симплекс Δ с координатами вершин :
Значения для данной точки симплекса Δ называются её барицентрическими координатами[3].
Если размерность пространства равна n, то через любые n его точек можно провести гиперплоскость, и существуют множества из n + 1 точки, через которые гиперплоскость провести нельзя. Таким образом, n + 1 — минимальное число таких точек n-мерного пространства, которые не лежат в одной гиперплоскости; эти точки могут служить вершинами n-мерного многогранника[10].
Простейший n-мерный многогранник с количеством вершин n + 1 как раз и называется симплексом (принято также название «n-мерный тетраэдр»). В пространствах низшей размерности этому определению соответствуют такие фигуры[11]:
Все эти фигуры обладают тремя общими свойствами.
Вокруг любого n-симплекса в евклидовом пространстве можно описать n-сферу.
Для 1-симплекса это утверждение очевидно. Описанная 1-сфера будет представлять собой две равноудалённые от центра отрезка точки, совпадающие с концами отрезка, и её радиус будет составлять R = a/2. Добавим к 1-симплексу ещё одну точку и попробуем описать вокруг них 2-сферу.
Построим 2-сферу s0 радиусом a/2 таким образом, чтобы отрезок АВ был её диаметром. Если точка С находится за пределами окружности s0, то, увеличивая радиус окружности и смещая её в сторону точки С, можно добиться того, что все три точки окажутся на окружности. Если же точка С лежит внутри окружности s0, то подогнать окружность под эту точку можно, увеличивая её радиус и смещая в сторону, противоположную точке С. Как видно из рисунка, сделать это можно в любом случае, когда точка С не лежит на одной прямой с точками А и В. Не является помехой и несимметричное расположение точки С относительно отрезка АВ.
Рассматривая общий случай, предположим, что существует (n − 1)-сфера Sn−1 радиуса r, описанная вокруг некоторой (n–1)-мерной фигуры. Поместим центр сферы в начало координат. Уравнение сферы будет иметь вид
Построим n-сферу с центром в точке (0, 0, 0, ... 0, hS) и радиусом R, причём
Уравнение этой сферы
или
Подставив в уравнение (2) xn = 0, получим уравнение (1). Таким образом, при любом hS сфера Sn−1 является подмножеством сферы Sn, а именно — её сечением плоскостью xn = 0.
Предположим, что точка С имеет координаты (x1, x2, x3, ..., xn ). Преобразуем уравнение (2) к виду
и подставим в него координаты точки С:
Выражение в левой части представляет собой квадрат расстояния RC от начала координат до точки C, что позволяет привести последнее уравнение к виду
откуда можно выразить параметр hS:
Очевидно, что hS существует при любых RC, Xn и r, кроме Xn = 0. Это значит, что если точка С не лежит в плоскости сферы Sn−1, всегда можно найти такой параметр hS, что на сфере Sn c центром (0, 0, 0, ..., hS) будут лежать и сфера Sn−1, и точка С. Таким образом, вокруг любых n + 1 точек можно описать n-сферу, если n из этих точек лежат на одной (n − 1)-сфере, и последняя точка не лежит с ними в одной (n − 1)-плоскости.
Рассуждая по индукции, можно утверждать, что n-сферу можно описать вокруг любых n + 1 точек, если они не лежат в одной (n − 1)-плоскости.
Симплекс имеет n + 1 вершин, каждая из которых соединена рёбрами со всеми остальными вершинами.
Поскольку все вершины симплекса соединены между собой, то тем же свойством обладает и любое подмножество его вершин. Это значит, что любое подмножество из L + 1 вершин симплекса определяют его L-мерную грань, и эта грань сама является L-симплексом. Тогда для симплекса число L-мерных граней равно числу способов выбрать L + 1 вершину из полного набора n + 1 вершин.
Обозначим символом К(L, n) число L-мерных граней в n-многограннике; тогда для n-симплекса
где — число сочетаний из n по k.
В частности, число граней старшей размерности равно числу вершин и равно n + 1:
Для правильного n-мерного симплекса обозначим:
Тогда
Число L-мерных граней | |||||
Высота | |||||
Объём | |||||
Радиус описанной сферы | |||||
Радиус вписанной сферы | |||||
Двугранный угол |
Топологическим симплексом называют подмножество топологического пространства, которое гомеоморфно симплексу некоторого аффинного пространства (или, что то же самое, стандартному симплексу соответствующей размерности). Понятие топологического симплекса лежит в основе теории симплициальных комплексов (симплициальный комплекс — это топологическое пространство, представленное как объединение топологических симплексов, образующих триангуляцию данного пространства)[12].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.