Număr pentatopic

From Wikipedia, the free encyclopedia

Număr pentatopic
Remove ads

Un număr pentatopic sau 4-simplectic este un număr figurativ.[1] Șirul acestor numere apare într-a cincea poziție din rândurile din triunghiul lui Pascal, indiferent că triunghiul este citit de la stânga la dreapta sau de la dreapta la stânga, începând cu rândul al cincilea 1 4 6 4 1. Este și numărul de 3-fețe (celule) al unui n-simplex.

Informații pe scurt Nr. total de termeni, Subșir al ...
Thumb
Numărul pentatopic de 70 de sfere poate fi aranjat într-o figură cu latura bazei de 5 sfere. Fiecare strat reprezintă un număr tetraedric, de exemplu, cel de jos (verde) are 35 de sfere

Primele numere de acest tip sunt:[2]

1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365
Remove ads

Formule

Formula pentru al n-lea număr pentatopic este dată de raportul dintre al 4-lea factorial crescător al n și factorial de 4:[3][4]

.

unde reprezintă al n-lea număr tetraedric.

Numerele pentatopice pot fi reprezentate de coeficienții binomiali:[5]

care este numărul de seturi de 4 elemente care pot fi selectate dintre n + 3 elemente.

Numerele pentatopice pot fi reprezentate ca suma primelor n numere tetraedrice:[2]

Funcția generatoare pentru numerele pentatopice este[4]

Remove ads

Note

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads