Număr pentatopic

From Wikipedia, the free encyclopedia

Număr pentatopic

Un număr pentatopic sau 4-simplectic este un număr figurativ.[1] Șirul acestor numere apare într-a cincea poziție din rândurile din triunghiul lui Pascal, indiferent că triunghiul este citit de la stânga la dreapta sau de la dreapta la stânga, începând cu rândul al cincilea 1 4 6 4 1. Este și numărul de 3-fețe (celule) al unui n-simplex.

Informații pe scurt Nr. total de termeni, Subșir al ...
Număr pentatopic
Thumb
Generarea numerelor n-simplectice pe baza triunghiului lui Pascal
Nr. total de termeniInfinit
Subșir alNumere politopice
Formula
Primii termeni1, 5, 15, 35, 70, 126, 210
Index OEIS
Închide
Thumb
Numărul pentatopic de 70 de sfere poate fi aranjat într-o figură cu latura bazei de 5 sfere. Fiecare strat reprezintă un număr tetraedric, de exemplu, cel de jos (verde) are 35 de sfere

Primele numere de acest tip sunt:[2]

1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365

Formule

Formula pentru al n-lea număr pentatopic este dată de raportul dintre al 4-lea factorial crescător al n și factorial de 4:[3][4]

.

unde reprezintă al n-lea număr tetraedric.

Numerele pentatopice pot fi reprezentate de coeficienții binomiali:[5]

care este numărul de seturi de 4 elemente care pot fi selectate dintre n + 3 elemente.

Numerele pentatopice pot fi reprezentate ca suma primelor n numere tetraedrice:[2]

Funcția generatoare pentru numerele pentatopice este[4]

Note

Wikiwand - on

Seamless Wikipedia browsing. On steroids.