Remove ads
estudo das variações climáticas da Terra Da Wikipédia, a enciclopédia livre
Paleoclimatologia é o estudo das variações climáticas ao longo da história da Terra. Para isso, são estudados vestígios naturais que podem ajudar a determinar o clima em épocas passadas.
As observações meteorológicas com a ajuda de instrumentos paleoclimáticos, tal como as conhecemos hoje em dia, datam de há 100 ou 200 anos, dependendo do lugar. Este, porém, é um período muito curto relativamente às alterações sofridas pelo clima ao longo dos tempos, durante milhares ou até milhões de anos.
A história do clima pode ser deduzida através de evidências naturais,[1] tais como a composição do gelo, a estrutura de árvores petrificadas e outros fósseis e das rochas sedimentares.
Nos últimos dois bilhões de anos, o clima na Terra tem se comportado de forma mais ou menos cíclica, com períodos frios, chamados períodos glaciais, e períodos quentes, chamados períodos interglaciais. Estas mudanças na temperatura são causadas por diferentes aspectos, tais como perturbações na órbita da Terra, a atividade solar, impactos de meteoros, erupções vulcânicas e a ação humana.
O planeta já sofreu, ao longo de sua existência de 4,5 bilhões de anos, processos de resfriamentos e aquecimentos extremos. Está comprovado que houve alternância de climas quentes e frios (Terra estufa - "hothouse" - e Terra geladeira - "icehouse", na linguagem dos paleoclimatologistas), sendo este um fenômeno corrente na história do planeta. Atualmente o planeta está na situação de geladeira.
O último episódio de resfriamento ou glaciação, iniciado no Pleistoceno (1,8 milhões de anos antes do presente) teve seu ápice há cerca de 18 000 anos, quando, começou o processo de aquecimento, que continua nos dias de hoje. No entanto, o aquecimento não se dá sobre uma curva contínua. Neste espaço de tempo de 18 000 anos houve épocas de aquecimento e resfriamento, causando variações às vezes bruscas de temperaturas em períodos variáveis, mas que podiam ser de décadas ou menos, de vários graus Celsius. A comprovação destes fatos é fornecida pela análise de testemunhos de sondagens, de centenas de metros, obtidos no Ártico e na Antártida, através da análise da composição isotópica do oxigênio encontrado nas bolhas de ar presas no gelo.
Durante os últimos 500 milhões de anos, a Terra passou por quatro episódios extremamente quentes ("hothouse episodes"), sem gelo e com níveis elevados dos oceanos, e quatro episódios extremamente frios ("icehouse episodes"), como o que vivemos actualmente, com camadas de gelo, glaciares e níveis de água relativamente baixos nos oceanos. Pensa-se que esta variação de mais longo termo se deve a variações no influxo de radiação recebida devidas à viagem do nosso sistema solar através da galáxia, correspondendo os episódios mais frios a encontros com os braços espirais mais brilhantes, onde a radiação é mais intensa. Os episódios frios mais frequentes, cada 34 milhões de anos, mais ou menos, ocorrem provavelmente quando o sistema solar passa através do plano médio da galáxia. Os episódios extremamente frios de há 700 e 2300 milhões de anos, em que até no equador havia gelo, correspondem a períodos em que havia uma taxa de nascimentos de estrelas na nossa galáxia anormalmente alta, implicando um grande número de explosões de estrelas e uma radiação cósmica muito intensa.
O carbono-14 radioactivo e outros átomos raros produzidos na atmosfera pelas partículas cósmicas fornecem um registro de como as suas intensidades variaram no passado e explicam a alternância entre períodos frios e quentes durante os últimos 12 000 anos. Sempre que o Sol era fraco e a radiação cósmica forte, seguiram-se condições frias, como a mais recente, na Pequena Idade do Gelo de há 300 anos. Considerando escalas de tempo mais longas, encontra-se uma explicação credível para as variações de maior amplitude do clima da Terra.[2]
Para se determinar o clima em eras passadas, pela não existência de observações meteorológicas que cobrissem um intervalo de tempo satisfatório, os paleoclimatólogos utilizam algumas técnicas e diversos estudos para se determinar o clima passado.[1] As técnicas mais utilizadas são:
É uma das técnicas mais empregadas. A avaliação de geleiras é possível, pois estas vão se depositando em camadas, de acordo com a era em que foi formada (as mais recentes vão cobrindo as mais antigas). Estima-se que as calotas polares possuem mais de 100 000 camadas. Nestas camadas, estudiosos encontraram pólen, o que é útil para estimar a cobertura vegetal em determinada época. A espessura da camada pode ajudar a determinar a quantidade de chuvas que aquela região recebeu, pois quanto maior a camada, maior a quantidade de chuvas.
Além disso, a relação entre diferentes isótopos de oxigênio e hidrogênio podem ser um indicador da temperatura média daquela região. Dependendo da camada em que forem encontrados, os cientistas podem avaliar a temperatura média daquele período. Destes estudos é que vieram as teorias sobre os ciclos sofridos pelo clima ao longo das eras.
Fósseis de árvores são úteis para a determinação da temperatura e da umidade. Através de datação radiométrica, que utiliza o tempo de vida média dos átomos que constituem o material, determina-se, embora com uma margem de erro de cerca de 200 anos, em média, o período em que esta árvore viveu. Os anéis encontrados nas árvores (ver figura) também são pistas sobre a idade e o clima em que esta árvore viveu. A largura destes anéis variam de acordo com o clima de uma forma geral, a espécie, a idade da árvore e a quantidade de água e alimento disponível naquele solo.
A análise de sedimentos permite verificar características do solo em uma determinada Era. Esta possibilita o estudo das características da vegetação, da vida existente (ou a ausência de) e temperatura através do tipo de rocha.
Existem, basicamente, três tipos de rochas. As magmáticas, que são formadas pela condensação do magma, indicam a existência de vulcões na vizinhança. As sedimentares são formadas pelo acúmulo de sedimentos. Indicam, também, que esta é uma região de formação antiga, que sofreu diversas alterações no clima. As metamórficas são formadas por alterações na composição das duas anteriores devido a variações de pressão e/ou temperatura em eventos extremos, podendo indicar períodos quentes ou frios. Também são indicadoras de atividade erosiva, pois a erosão também forma rochas Metamórficas, sem necessariamente variar temperatura ou pressão local.
As rochas formam camadas também, sendo que estas camadas demoram de milhares a milhões de anos para se sobreporem, formando, assim, uma fonte de dados de períodos muito distantes, já que as rochas sedimentadas se preservam ao longo do tempo.
A análise de recifes de corais permite avaliar as alterações nos oceanos. De acordo com as características dos corais permite-se avaliar temperatura da água, bem como sua evolução, pois os corais têm indicadores naturais, como a perda de sua coloração natural.
Os átomos, com exceção do Hidrogênio, possuem prótons e nêutrons (o Hidrogênio mais comum possui apenas um próton, e é conhecido pelo nome de prótio). Os prótons existentes no núcleo repelem-se, porém os nêutrons não permitem que os prótons se separem, exercendo uma força sobre eles. Contudo, quando o número de prótons é grande, os nêutrons não conseguem mais evitar a repulsão entre eles, tornando o átomo instável. Esta instabilidade expulsa partículas do núcleo e é chamado de decaimento. Elementos com mais de 83 prótons ou com uma quantidade elevada de nêutrons sofrem decaimento. Esta “desintegração” é constante e só cessa quando o átomo se estabiliza, o que pode demorar, desde de segundos a milhões de anos, podendo ser medidos através de aparelhos como o espectroscópio de massa e detectores de radiação.
Os elementos radioativos mais usados para datação são:
É usado para a datação de matérias inorgânicas. O Urânio-238 desintegra-se formando Chumbo-206. Com isto, basta medir a relação Chumbo/Urânio, sabendo que demora anos para esta relação ser igual a 1, para determinar a idade do objeto em questão. Ou seja, sabendo-se que o Urânio-238 tem meia-vida (tempo médio para que metade dos átomos radioativos de Urânio sofrerem decaimento) de anos.
É usado para a datação de substâncias orgânicas. O Carbono-14 é formado na atmosfera devido à radiação que vem do universo e é absorvido pelas plantas na absorção de CO2. Assume-se, então, que a relação de Carbono-14 (instável) para Carbono-12 (estável) mantém-se a mesma enquanto o espécime está vivo. Após a morte do organismo, o Carbono-14 desintegra-se à Nitrogênio-14 (estável). Com isto, basta medir a relação Carbono-14/Carbono-12, sabendo-se que a meia-vida do Carbono-14 é de cerca de 5600 anos, para saber a idade do item analisado.
A História da Terra normalmente é dividida pela escala de tempo geológica. Uma outra classificação utilizada em Paleoclimatologia é a Classificação de Blytt-Sernander.
A classificação geológica é baseada em eventos de importância geológica (surgimento de determinadas formações de relevo ou de determinado tipo de rochas) e paleontológicos (extinções em massa ou surgimento de novas espécies).
A Classificação de Blytt Sernander foi elaborada pelos botânicos dinamarqueses Axel Blytt e Ruttger Sernander. É baseada no acúmulo de matéria sedimentar em plantas. Utilizando datação radiométrica (com Carbono 14), determinou-se a divisão dos eventos na Terra.
Esta classificação foi confirmada cientificamente com os estudos das Zonas de Pólen, que são uma forma de datação utilizando resíduos de pólen de diferentes espécies vegetais, principalmente do final do Pleistoceno e início do Holoceno.
Estes estudos foram conduzidos pelo biólogo sueco Lenhart von Post, que analisou diferentes espécies de plantas destes períodos, e concluiu que de acordo com a diversidade das espécies, a distribuição destas e as características de cada uma, um tipo de clima característico se mostrava existente. O estudo de von Post foi capaz de ratificar a divisão de Blytt-Sernander, que mostrava variações entre períodos quentes e frios, alternadamente.
A atmosfera da Terra primitiva era composta por hidrogênio, vapor de água, metano e amoníaco, e havia grande ocorrência de tempestades com descargas elétricas, devido a erupções vulcânicas, com grande incidência de raios ultravioleta vindos do Sol.
Com o aparecimento de formas de vida, a atmosfera foi se modificando. A partir do aparecimento dos organismos autótrofos fotossintetizantes, esta composição atmosférica passou a conter oxigênio e foi decisiva para o desenvolvimento de novas formas de vida. Mais especificamente, alguns milhões de anos após o aparecimento das cianobactérias, quando já havia oxigênio suficiente para que os recém-surgidos organismos aeróbicos se aproveitassem da energia que ele fornecia, num processo que libertava mais do que nos processos anaeróbicos.
O Pré-cambriano é um dos períodos mais remotos do nosso planeta. Existem poucas evidências desta época para um estudo aprofundado sobre o assunto.
Entre os três isótopos do Carbono: (Carbono-12, Carbono-13 e Carbono-14) , que se diferenciam pela variação na quantidade de neutrões nos seus núcleos, os organismos aquáticos da época (algas unicelulares fotossintetizantes e bactérias) utilizavam o Carbono-12 para o processo de fotossíntese, sendo o Carbono-13, mais pesado, mortal para esses seres vivos.
Houve variações bruscas na concentração de Carbono-13, e isso causou um aumento da mortalidade nos oceanos primitivos (“Oceanos Mortos”).
Com uma população decrescente de organismos fotossintetizantes para libertar gás carbónico na atmosfera, atenuou-se o efeito estufa e, por conseguinte, a temperatura média do planeta foi diminuindo rapidamente até chegar ao que se conhece por "Planeta Bola de Neve" ou "Snowball Earth".
As eras do gelo são períodos cíclicos que são caracterizados por uma queda acentuada na temperatura média do planeta. Este abaixamento da temperatura permite a expansão das geleiras até latitudes mais baixas. Tais períodos ocorrem em intervalos de aproximadamente 40 a 100 mil anos.
Sabe-se que variações na quantidade de energia solar ocorrem ao longo do tempo causam perturbações no clima terrestre, podendo gerar uma “Era do Gelo”, ou não.
Além disto, os “Ciclos de Milankovich”, a composição atmosférica daquele período, os movimentos tectônicos, que alteram a distribuição espacial dos continentes e dos oceanos, o que afeta a circulação atmosférica e a quantidade de calor absorvido pelo planeta, alterações na órbita do sistema Terra-Lua, impacto de meteoros e erupções vulcânicas são as principais causas das eras do gelo.
Evidências sobre a existência de tais eras vêm em forma de rochas e os detritos (morenas, que são sedimentos especificamente originados devido ao derretimento de geleiras) em locais que atualmente não possuem gelo. Análise de sedimentos depositados em geleiras e em oceanos também são evidências fortes.
Há de 50 milhões de anos atrás, a Terra não tinha Eras Glaciais regulares, mas, quando ocorriam, tendiam a ser colossais.[3] Um resfriamento substancial ocorreu há cerca de 2,2 bilhões de anos, seguido de um ocorrido há 1 bilhão de anos ou mais de calor. Depois houve outra era glacial ainda maior que a primeira - tão grande que alguns cientistas de hoje se referem à época em que ocorreu como Criogeniano ou superasumo glacial.[4] A condição é mais popularmente conhecida como "Terra Bola de Neve".
A "Terra Bola de Neve" foi uma era do gelo de grandes proporções, ocorrida no período há 750 e 580 milhões de anos atrás.
"Bola de Neve", porém, não exprimem bem o rigor assassino das condições. Segundo a teoria, devido a uma queda na radiação solar em cerca de 6% e à redução na produção (ou a retenção) de gases estufa, a Terra perdeu a capacidade de reter o seu calor. Na altura, tornou-se numa espécie de Antártida gigantesca. As temperaturas baixaram até 45°C. Toda a superfície do planeta pode ter se congelado, com o gelo do oceano chegando a uma espessura de oitocentos metros em latitudes maiores e de dezenas de metros nos trópicos.[5]
É importante realçar que ainda assim havia vida nesta época. Alguns organismos anaeróbicos conseguiram sobreviver, mas também alguns organismos em regiões profundas no oceano. Debaixo da camada de gelo, utilizando energia geotérmica, seres denominados Quimiolitotróficos utilizavam minerais como fonte de energia para realizar seu metabolismo.
Há um problema grave nisto: os dados geológicos indicam gelo por toda parte, inclusive ao redor do Equador, enquanto os dados biológicos indicam com a mesma firmeza que deve ter havido água exposta nalgum sítio. Antes de mais, as cianobactérias sobreviveram à experiência, e elas realizam a fotossíntese. Para isso, precisavam de luz solar, e quem vive nos países frios sabe que o gelo rapidamente se torna opaco, e, após alguns metros, bloqueia toda a luz. Duas possibilidades surgiram:[6]
Outra evidência forte é a concentração de Oxigénio durante aquele período. Actualmente a concentração deste gás é cerca de 20 vezes menor do que na época da “Snowball Earth”; isto porque a combinação do Oxigénio com o Carbono forma CO2, sendo este gás pouco comum nessa época, já que o carbono abundante era um isótopo mais pesado (Carbono-13), incapaz de o formar.
A razão pela qual a Terra aqueceu , novamente, a actividade vulcânica. Os vulcões elevaram-se acima da superfície soterrada e bombearam para o exterior enormes quantidades de calor e gases que derreteram as neves e restauraram a atmosfera, uma vez que um planeta gélido deveria refletir tanto o calor que permaneceria congelado para sempre.[7]
O Período Atlântico, pela classificação de Blytt Sernander, ou Holoceno pela classificação geológica, foi um período de extremo aquecimento na Terra. Foi descoberto que no Inverno, a temperatura no pólo Norte pode ter atingido 9°C. A explicação para isso é baseada na inclinação recorde do eixo da Terra (24º) e na proximidade maior do planeta com o sol. Foi o período em que o planeta recebeu uma quantidade maior de radiação solar do que a média do restante do período, principalmente no Hemisfério Norte. Foi também um período de maior atividade da Zona de Convergência Intertropical (ITCZ) devido à maior quantidade de radiação, conseqüentemente, maior quantidade de calor. Isto alterou significativamente o regime de circulação planetária, causando o que ficou conhecido como “A África Úmida”, uma alteração no regime de monções na África que causou um aumento muito grande na precipitação neste continente.
Dos eventos datados por Blytt e Sernander, este foi um caso peculiar, onde o clima na Terra se resfriou, principalmente no Hemisfério Norte. Foi um rápido retorno à Era glacial após a Oscilação de Allerød, onde houve ligeira deglaciação. Evidências sugerem que a temperatura média nesta época chegou a -5 °C. A causa mais provável foi um evento de alteração na circulação oceânica no Atlântico Norte, que causou um quase cessamento da circulação termohalina (que ocorre de acordo com a densidade do fluido). Isso cessou as trocas de calor entre o oceano e o continente, o que causou um desequilíbrio no balanço térmico da região. Este nome vem de vestígios da espécie vegetal Dryas octapætala típica de climas frios, que foi achada em sedimentos datados daquela época.
Durante os séculos XIII a XVIII houve um evento curioso nas latitudes médias. A temperatura média do planeta chegou a 1°C neste período. Um enfraquecimento na atividade solar e um aumento da atividade vulcânica foram as causas apontadas para este fenômeno. Ciclos de fraca atividade solar durante este período foram notados por diversos observadores. Para se ter uma ideia, durante o período de 1645 à 1715, o Sol só apareceu 50 vezes, enquanto o normal seria de 40 a 50 mil para aquelas latitudes.
O Período Quente Medieval, também conhecido como Ótimo Climático Medieval ou a Anomalia Climática do Medieval, foi um período que estima-se ter ocorrido entre 950 e 1250 E.C., que foi atipicamente quente na região do Hemisfério Norte [8]. Possíveis causas para este fenômeno incluem um aumento na atividade solar, diminuição nas atividades vulcânicas e alterações na circulação do oceano
O Império Mesopotâmio foi um dos mais prósperos durante os anos de 3000 a.C. e 1500 a.C. sob o governo da dinastia Akkad. Durante o governo de Sargon de Akkad, por volta de 1130 a.C., começou o declínio deste império, graças ao clima. Os Mesopotâmios foram os primeiros a desenvolver uma agricultura de irrigação, por viverem em um ambiente árido (atualmente o Oriente Médio). Os rios Tigre e Eufrates são alimentados pelo regime de ventos e mantinham um bom nível para a irrigação. Porém, conforme os anos passavam, o nível dos rios foi diminuindo, causando perdas nas colheitas e uma migração em massa da população para regiões mais ao sul, o que levou ao fim do império. Evidências geológicas e medições com instrumentação moderna apontam que o nível destes rios diminui em mais de 50% quando as águas do Nordeste do Oceano Atlântico encontram-se mais frias, alterando o padrão de circulação local. E foi o que de fato ocorreu naquela época.
“ | As trevas tomaram conta dos céus. O Sol não nos contemplava com sua beleza vital! Parecia que estava constantemente em um eclipse! Seus raios estavam corrompidos! | ” |
A frase de Procópio de Cesareia ilustra bem o que ocorreu naqueles anos:
Tais mudanças ocorreram por causa do choque de um meteorito com a Terra e uma erupção vulcânica ocorridas no ano de 535. As partículas lançadas no ar, tanto pelo meteorito quanto pelo vulcão, causaram um bloqueio para a radiação solar incidente, que ficou presa na alta atmosfera e foi refletida de volta para o espaço.
Um evento similar ao dos anos 535 e 536 ocorreu em 1816, quando 3 vulcões (um na Indonésia, um em St. Vincent, Caribe, e outro nas Filipinas) entraram em erupção num espaço de tempo menor que 3 anos. Relatos de racionamento de alimentos, destruição de colheitas e uma crise econômica gerada pelo “ano sem verão” foram feitos nas mais diversas partes do mundo. Um efeito curioso foi que neste ano, devido ao racionamento de comida e ao nível alto de poluição no ar, o alemão Karl Dreis teve a ideia de inventar um meio de transporte que não usasse cavalos como força motriz. Daí, a necessidade sendo a mãe das invenções, ele inventou o Dreisine (ou velocípede), que foi a base das modernas motocicletas e bicicletas.
A extinção do Permiano-Triássico ou "extinção Permo-Triássica" foi uma extinção em massa que ocorreu no final do Paleozóico há cerca de 251 milhões de anos. Foi o evento de extinção mais severo já ocorrido no planeta Terra, resultando na morte de aproximadamente 95% de todas as espécies da época. A extinção provocou uma mudança drástica em todas as faunas e marca a fronteira entre o Permiano e o Triássico.
A teoria mais aceita pela comunidade cientifica actualmente, diz que um tipo de erupção vulcânica gigantesca aconteceu no território da Sibéria, que libertou grandes quantidades de dióxido de carbono, aumentando o efeito estufa em 5 graus extras na temperatura da Terra. E por consequência disso, ocorreu a sublimação de uma grande quantidade de metano congelado no fundo dos oceanos. A libertação deste metano para a atmosfera causou o aumento em mais 5 graus a temperatura do efeito estufa, somando 10 graus extras a temperatura do mundo. E com isso os únicos lugares onde a vida poderia sobreviver seriam próximos aos Pólos geográficos da Terra. Para os biólogos esta explicação é mais plausível, pois esta mudança rápida de temperatura não poderia ser acompanhada pelo processo evolucionário de adaptação.
Outro evento de extinção em massa ocorreu na intersecção entre os períodos Paleoceno e Eoceno. Foi um período extremamente quente devido ao excesso de gás Metano, um gás que é formado em cristais de gelo que se formam no fundo dos oceanos, derivado do Carbono-12, enquanto a terra se aquecia em um período interglacial. Este gás é um dos “gases estufa”, sendo que seu “poder de estufa” é 23 vezes maior que o do gás carbónico. Diversas espécies marinhas morreram devido ao aumento da temperatura da água do mar, bem como ao aumento da salinidade, devido à reação deste gás com componentes presentes na água do mar. As evidências mais concretas são a grande concentração de Carbono 12 nas amostras de animais, vegetais e minerais fossilizados da época.
O físico e matemático sérvio Milutin Milankovich observou que o movimento de precessão, a inclinação do eixo terrestre e a excentricidade da órbita terrestre variam ciclicamente ao longo do tempo.
Estas variações explicam alguns dos eventos climáticos, como foi mostrado, pois provoca uma mudança na quantidade de radiação recebida por um determinado Hemisfério no verão e no inverno.
O Sol passa por variações em sua atividade, ou seja, em suas emissões de radiação. Estes ciclos ocorrem em aproximadamente 11 anos e podem assumir valores máximos ou mínimos, causando várias alterações no clima.
O paleomagnetismo é o estudo das variações do campo magnético da Terra ao longo dos anos. Os eventos de variação magnética ocorrem em ciclos não regulares, podendo sua intensidade variar desde efeitos apenas mensuráveis à inversões na orientação do campo. As inversões magnéticas ocorrem devido à “resposta” do núcleo da Terra (condutor, formado de Ferro e Níquel) ao efeito magnético das emissões solares (de alta energia). Esta “resposta” tenta reproduzir o campo gerado pela radiação solar e apresenta diversas irregularidades. Durante os eventos de inversão, podem ocorrer mudanças climáticas acentuadas devido à variação da localização dos Pólos, que é por onde grande parte das emissões solares penetram. Estas mudanças, normalmente, são devido ao aquecimento diferenciado das regiões que estão sob o efeito das emissões.
O aquecimento global é o processo em que ocorre aumento significativo na temperatura. Este aumento causa desde tempestades mais severas e freqüentes à tufões e furacões altamente destrutivos. Atualmente, tem se notado um aumento na temperatura média do planeta de cerca de 0,7°C nos últimos 140 anos. Este aquecimento é causado, principalmente pelo efeito estufa, que vem sendo, cada vez mais, intensificado por atividades humanas, e pelo buraco na camada de Ozônio. Tema sob debate científico.
Os meteoros são rochas compostas de minerais e gelo que orbitam a nossa galáxia. Estas rochas, quando atraídas pelo campo gravitacional da Terra, podem entrar na atmosfera. Uma grande parte destas pedras é destruída graças à própria atmosfera, já que o atrito com esta gera um aquecimento próximo a 5000 °C e desintegra as rochas. Porém algumas rochas maiores conseguem atingir a superfície e o impacto é tão violento que uma nuvem de metais e poeira se forma na atmosfera, impedindo a entrada de radiação solar.
De forma análoga, os vulcões, que se formam nas zonas de falhas das placas tectônicas, lançam magma (metais fundidos da Astenosfera) e junto, poeira, cinzas e partículas densas de fuligem, também ocasionando o bloqueio dos raios solares ,efeito chamado de Escurecimento global.
A Paleoclimatologia é uma ciência fundamental para o estudo do clima presente e para a elaboração de previsões futuras já que seus estudos permitem avaliar o clima de uma forma cíclica (em alguns casos), permitindo assim verificar quais efeitos são de um período natural do clima e o que foi causado pelo homem e a entender melhor estas mudanças. Além disso, a Paleoclimatologia tem uma aplicação no ramo da Paleontologia, pois seus estudos aplicados a fósseis animais e vegetais ajudam a determinar as características destes animais (hábitos, alimentação, etc.), além do estudo de civilizações antigas.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.