Em matemática, a notação de Voigt ou forma de Voigt em álgebra multilinear é um modo de representar um tensor simétrico reduzindo sua ordem.[1] Existem algumas poucas variantes e nomes associados com esta ideia, por exemplo notação de Mandel, notação de Mandel–Voigt e notação de Nye. A notação de Kelvin é uma atualização devida a Helbig[2]
de antigas ideias de Lord Kelvin. As diferenças aqui repousam em certos pesos associados à seleção de linhas e colunas do tensor. A nomenclatura varia de acordo com a tradição no campo de aplicação.
Por exemplo, um tensor simétrico 2×2 em notação matricial
tem somente três elementos distintos, os dois da diagonal principal e o último fora desta diagonal, pois se o tensor é simétrico então os elementos com índices 12 e 21 são obrigatoriamente iguais. Assim, X pode ser expresso como o vetor
- .
Como outro exemplo, o tensor tensão (em notação matricial) é expresso como
Na notação de Voigt é simplificado como o vetor de seis componentes
O tensor deformação, similar em natureza ao tensor tensão — ambos são tensores simétricos de segunda ordem —, é expresso em forma matricial como
Sua representação na notação de Voigt é
sendo , e as deformações cisalhantes de engenharia.
A grande vantagem em usar diferentes representações para tensões e deformações é que a invariância escalar
é preservada.
Da mesma forma, um tensor simétrico de quarta ordem pode ser reduzido a uma matriz 6×6.
Regra mnemónica fácil de memorizar a notação de Voigt para um tensor de segunda ordem 3×3:
- Escrever o tensor em forma matricial (no exemplo a seguir o tensor tensão)
- Eliminar a parte diagonal inferior
- Ponto de partida: Riscar a diagonal principal a partir do elemento de índices 11 (primeira linha e primeira coluna) ate o elemento de índice 33 (terceira linha e terceira coluna)
- Seguir riscando para cima até a primeira linha (da terceira até a primeira linha, permanecendo na terceira coluna)
- Retornar riscando até encontrar o último elemento não riscado da primeira linha (da terceira até a segunda coluna, permanecendo na primeira linha). Este é o ponto de chegada.
Os índices de Voigt são numerados em sequência a partir de 1, iniciando no ponto de partida e seguindo até o ponto de chegada (no exemplo os números em azul), mapeando todos os elementos do tensor.
Para um tensor simétrico de segunda ordem
somente seis componentes são distintas, as três na diagonal principal e as outras três restantes fora da diagonal. Pode assim ser expresso na notação de Mandel como o vetor
A principal vantagem da notação de Mandel é permitir o uso da mesma operação convencional usada com vetores, por exemplo
Um tensor simétrico de quarta ordem satisfazendo e tem 81 componentes no espaço quadridimensional, mas somente 36 componentes são distintas. Assim, na notação de Mandel, pode ser expresso como
Epônimo do físico Woldemar Voigt, é de uso prático em cálculos envolvendo modelos constitutivos para a simulação de materiais sólidos, tais como a lei de Hooke, bem como no método dos elementos finitos[3] e MRI de difusão.[4]
A lei de Hooke consiste em um tensor simétrico de quarta ordem, com 81 componentes (3×3×3×3), relacionando dois tensores simétricos de segunda ordem, os tensores tensão e deformação. A notação de Voigt permite que este tensor seja reduzido a uma matriz simétrica 6×6.[5]