Top Qs
Linha do tempo
Chat
Contexto

Inverso multiplicativo

Da Wikipédia, a enciclopédia livre

Inverso multiplicativo
Remove ads
Remove ads

Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro.

Thumb
A função real de variável real f(x)=1/x asoccia cada x não-nulo com seu inverso multiplicativo.

No caso de uma operação não comutativa, o inverso deve ser tal que .

Quando este inverso é único (por exemplo, o inverso multiplicativo de um número real), ele é representado por:

ou

ou

O termo "recíproco" era de uso comum pelo menos até a terceira edição de "Encyclopædia Britannica" (1797) para descrever dois números cujo produto é 1; As quantidades geométricas em proporção inversa são descritas como reciprocall em uma tradução 1570 de Euclid Elements .[1]

Remove ads

Unicidade

Resumir
Perspectiva

As condições necessárias para que se possa definir o inverso multiplicativo são um conjunto S, uma operação binária * definida como uma função e a existência de um elemento neutro 1 desta operação, definido de forma que .

Estas são as definições de um grupóide com elemento neutro.

Por exemplo, para a operação binária × definida no conjunto {1, a, b, c} de forma que 1 seja o elemento neutro, a × a = 1, a × b = 1, a × c = a, b × a = 1, b × b = b, b × c = b, c × a = c, c × b = 1 e c × c = c, temos que a é um elemento inverso de a, b também é um elemento inverso de a e a é um elemento inverso de b, e não existe elemento inverso de c. Note-se que no caso geral, o elemento inverso não precisa existir nem ser único (devia se chamar de um elemento inverso, em vez de o elemento inverso).

Quando a operação é associativa (ou seja, (S, *) é um monóide), pode-se mostrar que o inverso, se existe, é único:

Seja x um elemento de S, e y e z elementos inversos de x. Então, pela associatividade:
Portanto, pelas definições de elemento inverso e de elemento neutro:
Remove ads

Inverso multiplicativo de alguns números

Mais informação , ...
Remove ads

Em forma de divisão

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma divisão, é só trocar o dividendo e o divisor de lugar. Exemplos:

  • Se , para descobrir o valor inverso de 4, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,25 é o valor inverso de 4.
  • Se , para descobrir o valor inverso de 5, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,2 é o valor inverso de 5.
  • Se , para descobrir o valor inverso de 8, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,125 é o valor inverso de 8.
  • Se , para descobrir o valor inverso de 10, é só trocar o dividendo e o divisor de lugar, que vai ser . Portanto, 0,1 é o valor inverso de 10.

Em forma de potenciação

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma potenciação, é só conservar a base e trocar o expoente de positivo para negativo, ou de negativo para positivo. Exemplos:

  • Se , para descobrir o valor inverso de 4, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,25 é o valor inverso de 4.
  • Se , para descobrir o valor inverso de 27, é só trocar o expoente positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 27.
  • Se , para descobrir o valor inverso de 3125, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,00032 é o valor inverso de 3125.
  • Se , para descobrir o valor inverso de 1000000, é só trocar o expoente positivo para negativo, que vai ser . Portanto, 0,000001 é o valor inverso de 1000000.
Remove ads

Em forma de radiciação

O resultado de é o inverso do resultado de . Ou seja, para descobrir o valor inverso de um número que é resultado de uma potenciação, é só conservar o radicando e trocar o índice de positivo para negativo, ou de negativo para positivo. Exemplos:

  • Se , para descobrir o valor inverso de 12, é só índice o expoente positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 12.
  • Se , para descobrir o valor inverso de 8, é só trocar o índice positivo para negativo, que vai ser . Portanto, 0,125 é o valor inverso de 8.
  • Se , para descobrir o valor inverso de 7, é só trocar o índice positivo para negativo, que vai ser . Portanto, a dízima periódica é o valor inverso de 7.
  • Se , para descobrir o valor inverso de 5, é só trocar o índice positivo para negativo, que vai ser . Portanto, 0,2 é o valor inverso de 5.
Remove ads

Referências

  1. "In equall Parallelipipedons the bases are reciprokall to their altitudes". OED "Reciprocal" §3a. Sir Henry Billingsley translation of Elements XI, 34.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads