Loading AI tools
Da Wikipédia, a enciclopédia livre
O escalonamento de processos ou agendador de tarefas (em inglês scheduling) é uma atividade organizacional feita pelo escalonador (scheduler) da CPU ou de um sistema distribuído, possibilitando executar os processos mais viáveis e concorrentes, priorizando determinados tipos de processos, como os de I/O Bound e os CPU Bound.
O escalonador de processo é um processo que deve ser executado quando da mudança de contexto (troca de processo), ao passo que ele escolhe o processo que será executado pela CPU, sendo o escalonamento realizado com o auxílio do hardware.
São utilizados algoritmos de escalonamento para determinar qual processo será executado em determinado momento e por quanto tempo.
O escalonador de processos de 2 níveis escolhe o processo que tem mais prioridade e menos tempo e coloca-o na memória principal, ficando os outros alocados em disco; com essa execução o processador evita ficar ocioso.
O escalonador deve ainda se preocupar com a eficiência da CPU, pois o chaveamento de processos é complexo e custoso, uma vez que ele afeta o desempenho do sistema e por sua vez a satisfação do usuário.
Seleciona entre os processos em estado de pronto que estão na memória, para serem executados pelo processador, após a interrupção de um ciclo, uma interrupção de E/S, uma chamada de sistema ou outra forma de sinal. Assim o escalonador de curto prazo faz decisões de escalonamento muito mais frequentemente que os de médio e longo prazo. Uma decisão de escalonamento deve ser feita no mínimo a cada fatia de tempo, e estas são bem curtas.
Seleciona entre os processos que estão na memória virtual. Ele temporariamente remove o processo da memória principal e o coloca na memória secundária (swap) fazendo as operações de swapping in e swapping out. O escalonador a médio prazo pode realizar a operação swap out em vários casos, como: um processo que não está mais ativo após um tempo, um processo que tem baixa prioridade, um processo que tem tido falta de página frequentemente, um processo que está ocupando uma larga quantidade de memória que precisa ser removido da memória principal para outros processos serem carregados.
Seleciona os processos que estão na memória secundária e que serão levados para a memória principal. Isto é, quando uma tentativa de executar um programa é feita, sua admissão ao conjunto de processos sendo executados é autorizada ou atrasada pelo escalonador de longo prazo. Assim, este escalonador dita quais processos serão executados em um sistema, e o degrau de concorrência do sistema, ou seja quantos processos serão executados em concorrência, e como a divisão entre processos I/O bound(orientado à E/S) e CPU bound(orientados à CPU) deve ser feita. Geralmente este escalonador é responsável pelo Grau de Multiprogramação.
Para que a CPU não fique muito tempo sem executar tarefa alguma, os sistemas operacionais utilizam técnicas para escalonar os processos que estão em execução na máquina.
O escalonamento de processos é uma atividade complicada já que nenhum algoritmo é totalmente eficiente e a prova de falhas, principalmente em se tratando de sistemas interativos, como o Microsoft Windows. Nos sistemas interativos a interação com o usuário é fundamental já que quem o utiliza busca respostas rápidas e, a todo o momento, processos são interrompidos pelo usuário.
Escalonamento é muito atuante nos sistemas em tempo real, onde o tempo é um fator extremamente crítico, como: aviões, hospitais, usinas nucleares, bancos, multimídia, etc. Em ambientes como estes, quando um sistema tem respostas com atraso, é tão ruim quanto não obter. Tipos de sistemas em tempo real:
O escalonador do SO utiliza alguns critérios de escalonamento, como:
Os responsáveis por essa tarefa são algoritmos de escalonamento. Os sistemas operacionais utilizam combinações deles para melhor escalonar os processos.
O projeto de um escalonador adequado deve levar em conta uma série de diferentes necessidades, ou seja, o projeto de uma política de escalonamento deve contemplar os seguintes objetivos[carece de fontes]:
Como pode ser visto facilmente, alguns destes objetivos são contraditórios, pois dado que a quantidade de tempo disponível de processamento (tempo do processador) é finita, assim como os demais recursos computacionais, para que um processo seja favorecido outro deve ser prejudicado.
O maior problema existente no projeto de algoritmos de escalonamento está associado à natureza imprevisível dos processos, pois não é possível prevermos se um dado processo utilizará intensamente o processador, ou se precisará grandes quantidades de memória ou se necessitará numerosos acessos aos dispositivos e E/S.
Existem situações nas quais um processo de escalonamento é necessário. Dentre elas estão ocasiões onde um novo processo é criado; quando um processo terminou sua execução e um próximo processo pronto deve ser executado; quando um processo é bloqueado (semáforo, dependência de E/S), resultando que outro processo deve ser executado. Quando uma interrupção de E/S ocorre, o escalonador deve optar por: executar o processo que estava esperando essa interrupção; continuar executando o processo que já estava sendo executado; ou executar um terceiro processo que esteja pronto para ser executado.
Existem os algoritmos preemptivos e os não preemptivos. Os preemptivos são algoritmos que permitem que um processo seja interrompido durante sua execução, que seja por força de uma interrupção de entrada/saída, quer seja em decorrência da politica de escalonamento adotada e aplicada por parte do escalonador de processos ou simplesmente por força do término da execução do processo. Após a interrupção deste processo, ocorre o que se chama de troca de contexto, que consiste em salvar o conteúdo dos registradores e a memória utilizada pelo processo e conceder a outro processo o privilégio de executar na CPU, restaurando assim o contexto deste ultimo processo. Cabe ressaltar que nos algoritmos não preemptivos, por serem utilizados exclusivamente em sistemas monoprocessados, esse fato não ocorre, sendo cada programa executado até o fim.
Exemplos de Algoritmos:
Todos os algoritmos classificam os processos em estados: Iniciando, Pronto, Executando, Entrada/ Saída e Terminado.
● Algoritmo First-Come First-Served
● Algoritmo Shortest Job First
● Algoritmo Shortest Remaining Time Next
Para o sistema operacional organizar os processos que serão atendidos eles são atribuídos estados para os mesmos. São eles:
Quem armazena essas informações como os estados de processos e outras como: tempo e execução, por exemplo, é o bloco de controle de processo (PCB - Process Control Block).
Para melhorar essa distribuição da CPU entre os processos, alguns algoritmos utilizam diferentes prioridades. Com intuito de gerenciar melhor as prioridades de processo, o sistema operacional cria filas de processos. Em cada fila existem processos de mesma prioridade, e existe também fila para processos de entrada e saída. Prioridades podem ser mudadas pelo usuário, ou atribuídas automaticamente pelo sistema operacional em questão.
Mesmo com a aplicação de prioridades e algoritmos melhor implementados, alguns processos ainda correm o risco de sofrer starvation (ficar muito tempo sem receber a CPU) por isso em determinando momento pode ocorrer o que chamamos de aging (O aging ocorre quando a prioridade de um processo vai se alterando com o "tempo de vida" do mesmo, controlando o starvation), que muda momentaneamente a prioridade de um processo que não é executado há muito tempo e joga sua prioridade para a mais alta possível para que ele seja atendido, logo após as prioridades voltam ao normal.
Outro caso em que prioridades são alteradas é quando um programa de baixa prioridade começou a fazer uso de algum periférico de entrada e saída antes de outro de prioridade alta. Neste caso processos de alta prioridade são obrigados a esperarem os de baixa terminar sua E/S para poderem usar este periférico.
Existem ainda sistemas em que quando um processo inicia sua execução, o sistema garante que este processo vai ser terminado, são chamados sistemas garantidos. Nestes sistemas a intervenção do usuário é mínima, ao contrário do que ocorre em sistemas em tempo real como o Windows em que o usuário interrompe processos a todo instante por isso o sistema não garante que um processo vai ser Terminado.
Processos são interrompidos e retomados a todo tempo, para que o sistema operacional possa fazer esse tipo de ação, é necessária a troca de contexto. Para que o sistema operacional possa interromper um processo e retomar ele mais tarde, ele usa a PCB (Process Control Block) para guardar todas as informações que a CPU estava usando naquele momento e possa consultá-la mais tarde para que retome exatamente no ponto em que foi interrompido anteriormente.
Existem três motivos em potencial para realizar uma troca de contexto:
Processos podem ser divididos em “pedaços” para que eles não deixem de responder por algum motivo externo, como isso poderia atrapalhar a sua execução, ou para agilizar a programação e execução. Quando programas são divididos em threads, podemos ter partes do processo rodando em paralelo, pois as threads também são escalonáveis e todas as threads dentro de um processo compartilham o mesmo espaço de endereçamento.
Vantagens:
Desvantagens:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.