Loading AI tools
Da Wikipédia, a enciclopédia livre
O comprimento de onda Compton pode ser entendido como uma limitação fundamental na medida da posição de uma partícula, tomando-se as implicações da mecânica quântica e relatividade especial em conta. Isto depende da massa da partícula.
O comprimento de onda Compton de uma partícula é dado por
onde
O valor CODATA de 2002 para o comprimento de onda Compton do elétron é 2.4263102175×10−12 m com uma incerteza padrão de 0.0000000033×10−12 m.[1] Outras partículas têm diferentes comprimentos de onda Compton.
Para ver-se isto, note-se que nós podemos medir a posição de uma partícula por incidir luz sobre ela - mas medir a posição precisamente requer luz de pequeno comprimento de onda. Luz de comprimento de onda pequeno consiste de fótons de alta energia. Se a energia destes fótons excede , quando um atinge a partícula onde cuja posição está sendo medida a colisão deve ter suficiente energia para criar uma nova partícula do mesmo tipo. Disto resulta em tornar oculta a questão da localização original da partícula.
Este argumento também mostra que o comprimento de onda Compton é a ponto de interrupção abaixo do qual a teoria quântica de campos – a qual pode descrever a criação e aniquilação de partículas – torna-se importante.
Pode-se fazer o argumento acima um tanto mais preciso como segue-se. Suponhamos que deseja-se medir a posição de um partícula dentro de uma precisão . Então a relação de incerteza para a posição e o momento diz que
então a incerteza no momento da partícula satisfaz
Usando a relação relativística entre momento e energia, quando excede então a incerteza na energia é maior que , o que é suficiente energia paracriar outra partícula do mesmo tipo. Então, com um pouco de álgebra, nós vemos aqui uma limitação fundamental
Assim, pelo menos dentro de uma ordem de magnitude, a incerteza na posição deve ser maior do que o comprimento de onda de Compton .
O comprimento de onda de Compton pode ser comparado com o comprimento de onda de de Broglie, o qual depende do momento de uma partícula e determina o ponto de corte entre o comportamento de partícula e onda na mecânica quântica.
Para férmions, o comprimento de onda de Compton determina a seção transversal de interações. Por exemplo, a seção transversal para a dispersão de Thonsom de um fóton de um elétron é igual a
,
onde é a constante de estrutura fina e é o comprimento de onda de Compton do elétron. Para bósons gauge, o comprimento de onda de Compton determina a escala da interação Yukawa: desde que o fóton não tenha massa de repouso, o eletromagnetismo tem escala infinita.
O comprimento de onda de Compton do eléctron é um dos do trio de unidades de comprimento relacionadas, as outras duas sendo raio de Bohr e o raio clássico do elétron . O comprimento de onda de Compton é obtido a partir da massa do elétron , constante de Planck e a velocidade da luz . O raio de Bohr é obtido de , e a carga do elétron . O raio clássico do elétron é obtido de , e . Qualquer um destes três comprimentos pode ser escrito em termos de qualquer outro usando a constante de estrutura fina :
A massa de Planck é especial porque ignorando fatores de e igualmente, o comprimento de onda de Compton para esta massa é igual a seu raio de Schwarzschild. Esta distância especial é chamada comprimento de Planck. Este é um simples caso de análise dimensional: o raio de Schwarzschild é proporcional à massa, onde o comprimento de onda de Compton é proporcional ao inverso da massa.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.