Loading AI tools
Da Wikipédia, a enciclopédia livre
Os teoremas espectrais são fundamentais na álgebra linear, por garantirem a existência de uma base ortonormal de autovectores para alguns tipos de operadores. Isto implica que o operador seja diagonalizável, o que facilita bastante os cálculos.[1][2]
Seja um operador auto-adjunto e V um espaço vetorial complexo ou real de dimensão n. Então existe uma base ortonormal de V formada por autovectores de T.[3][1]
Seja um operador linear e V um espaço vetorial complexo de dimensão n. Então T é normal se, e somente se, existe uma base ortonormal de V formada por autovectores de T. Note que, como todo operador unitário é normal, o teorema pode ser estendido a operadores desse tipo.[3][1]
Seja um espaço de Hilbert separável e um operador compacto auto-adjunto, então existe uma família ortonormal de autovetores com autovalores associados tais que:[3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.