Em matemática, uma sequência ou sucessão é uma função cujo domínio é um conjunto contáveltotalmente ordenado. Define-se o tamanho de uma sequência pelo número de elementos que esta possui, podendo existir sequências infinitas ou finitas.[1]
A sequência também é caracterizada pelo comportamento de seus termos, podendo ser crescente, decrescente, não crescente ou não decrescente. As sequências também podem ser recorrentes, sendo cada termo definido por uma relação que envolve um ou mais termos anteriores. Exemplos conhecidos de sequência são as progressões aritméticas, progressões geométricas e a sequência de Fibonacci, sendo esta última uma sequência recorrente. A análise real inclui o estudo dos limites de sequências de números reais.
Uma sequência é um conjunto de números dispostos em uma ordem, onde cada número é chamado de termo. O termo é escrito da forma , sendo a posição ou ordem do termo. Essa ordem é definida segundo a lei de formação da sequência.[2][3][4]
Em análise matemática, diz-se uma sequência como uma função , definida sobre um subconjunto dos números naturais que toma elementos no conjunto .[5]
Para sequências, denota-se usualmente o valor de em por em vez de Este termo é dito ser o -ésimo termo da sequência. A notação é usada para denotar a sequência , cujos índices são tomados no conjunto . Quando o conjunto dos índices está subentendido, normalmente escrevemos ou, simplesmente, . Por extenso, escrevemos . Observamos, ainda, que as notações e também são encontradas, embora estas se confundem com a notação usual para conjuntos.[6][7][8][9][10]
Uma sequência numérica infinita é uma função , cujo domínio é o conjunto dos número naturais.[8][9][10] Com menos formalidade, uma sequência infinita é uma sequência em que todo termo possui um sucessor. Alguns exemplos são:
a sequência de aproximações por falta para (3; 3,1; 3,14; 3,141; 3,1416,...);
a sequência constante (1, 1, 1, 1, 1,...).
No estudo de dinâmica simbólica,[11] é usado o conceito de uma sequência bi-infinita: uma sequência que é indexada não por , mas por . Assim, usa-se a notação para se referir a sequência . Também usa-se a notação mais compacta com um ponto separando a parte com índices negativos da parte com índices naturais.
Uma sequência é chamada limitada quando existem números reais e onde todos os termos de possuem valores entre esses dois números, ou seja, para todo . Quando os valores e são simétricos ( e ), ou seja, , o intervalo é chamado de simétrico. Uma sequência é limitada superiormente (ou limitada à direita) quando se tem um número real tal que , de modo que todos os termos pertencem ao intervalo . Da mesma forma, é limitada inferiormente (ou limitada à esquerda) quando se tem um número real tal que , de modo que todos os termos pertencem ao intervalo . Se a sequência não é limitada, diz-se que ela é ilimitada.[8]
Uma sequência pode ser definida como convergente ou divergente. Quando se afirma que uma sequência é convergente, significa que ela possui um limite, ou seja, existe um número real que, na medida em que o índice cresce, os termos de vão se tornando mais próximos desse número real . Quando não há limite finito, diz-se que a sequência diverge.[8][9]
Sequências monótonas
As sequências monótonas são todas as sequências crescentes, não-decrescentes, decrescentes e não-crescentes[8]:
Sequência crescente: quando , ou seja, , para todo ;
Sequência não-decrescente: quando , ou seja, , para todo ;
Sequência decrescente: quando , ou seja, , para todo ;
Sequência não-crescente: quando , ou seja, , para todo .
Nota-se que uma sequência decrescente, pela definição, é uma sequência não-crescente. Da mesma forma, uma sequência crescente é uma sequência não-decrescente.
Exemplos
é crescente, pois ;
é decrescente, pois ;
é não decrescente, pois ;
é não crescente, pois .
Diz-se que uma sequência está recursivamente definida quando são dados o seu primeiro termo e uma lei explícita que relaciona seu -ésimo termo, com um ou mais termos anteriores, i.e., é explicitamente dada uma função , Em outras palavras, uma sequência recursivamente definida é aquela em que seu termo é dado em função de um ou mais termos anteriores a ele.[9] Sequências definidas recursivamente são, também, chamadas de sequências indutivas ou recorrentes.
Abaixo são apresentadas algumas sequências recorrentes comumente estudas.
Em uma progressão aritmética (P.A.), cada termo é igual à soma do termo anterior com uma constante denominada "razão da P.A.". Essa razão é geralmente representada pela letra . Escreve-se, então: ou , onde e são constantes previamente definidas.
Em uma progressão geométrica (P.G.), cada termo é igual ao produto do termo anterior por uma constante denominada "razão da P.G.". Ou seja, é uma progressão geométrica quando , , tendo sido dados o primeiro termo e a razão .
A sequência de Fibonacci é definida por , e , para, ou seja:
Método para extração da raiz quadrada
Um método numérico para extração da raiz quadrada pode ser elaborado a partir de uma sequência recorrente. Dado um número positivo qualquer , com o objetivo de encontrar um número positivo tal que , supõe-se que é conhecida apenas uma aproximação para . Nota-se que:
e, observa-se que:
é um valor entre e ;
se a aproximação aumenta de valor, então o fator diminui e vice-versa;
é solução de , se .
Destas observações, infere-se que uma boa aproximação para pode ser obtida tomando-se a média aritmética entre e , ou seja:
.
Agora, é uma nova aproximação de e, repetindo o argumento acima, temos que a média:
é uma aproximação para ainda melhor que .
Seja, então, a sequência definida recursivamente por:
.
Pode-se mostrar que converge para . Esta sequência tem origem na Mesopotâmia (séc. XVIII a.C.) e é talvez o método mais eficiente para extração da raiz quadrada.[9]
Uma subsequência é uma sequência gerada da exclusão de termos de uma determinada sequência de números reais.[9] Pode-se citar como exemplos:
A sequência de números pares é uma subsequência da sequência dos números naturais;
A sequência de números inteiros é uma subsequência da sequência dos números racionais.
Nota-se que uma subsequência de uma sequência é uma restrição dessa sequência a um subconjunto infinito do conjunto dos números naturais. Ou seja, ao se restringir os índices dos termos da subsequência obtém-se uma nova sequência retirada da sequência de origem.