Loading AI tools
processo físico-químico celular para obtenção de glicose através de energia solar. Da Wikipédia, a enciclopédia livre
A fotossíntese é um processo usado por plantas e outros organismos para converter energia luminosa em energia química que, por meio da respiração celular, pode ser liberada posteriormente para alimentar as atividades do organismo. Parte dessa energia química é armazenada em moléculas de carboidratos, como açúcares e amidos, que são sintetizados a partir do dióxido de carbono e da água – daí o nome fotossíntese, do grego phōs (φῶς), "luz", e súnthesis (σύνθεσις), "colocar junto".[1][2][3] A maioria das plantas, algas e cianobactérias realizam a fotossíntese; tais organismos são chamados fotoautotróficos. A fotossíntese é amplamente responsável pela produção e manutenção do teor de oxigênio da atmosfera da Terra e fornece a maior parte da energia necessária para a vida no planeta.[4]
Embora a fotossíntese seja realizada de forma diferente por cada espécie, o processo sempre começa quando a energia da luz é absorvida por proteínas chamadas centros de reação que contêm pigmentos/cromóforos de clorofila verde (ou outras colorações). Nas plantas, essas proteínas são mantidas dentro de organelas chamadas cloroplastos, que são mais abundantes nas células das folhas, enquanto nas bactérias elas estão embutidas na membrana plasmática. Nessas reações dependentes de luz, parte da energia é usada para tirar elétrons de substâncias adequadas, como água, produzindo oxigênio. O hidrogênio liberado pela separação da água é utilizado na criação de mais dois compostos que servem como reservas de energia a curto prazo, permitindo a sua transferência para conduzir outras reações: estes compostos são o fosfato de dinucleótido de nicotinamida e adenina reduzido (NADPH) e o trifosfato de adenosina (ATP), que sevem como a "moeda energética" das células.
Nas plantas, algas e cianobactérias, os açúcares são sintetizados por uma sequência de reações independentes de luz chamada ciclo de Calvin. Neste, o dióxido de carbono atmosférico é incorporado a compostos orgânicos de carbono já existentes, como a ribulose bisfosfato (RuBP).[5] Usando o ATP e o NADPH produzidos pelas reações dependentes de luz, os compostos resultantes são então reduzidos e removidos para formar mais carboidratos, como a glicose. Em outras bactérias, diferentes mecanismos, como o ciclo de Krebs reverso, são usados para atingir o mesmo objetivo.
Os primeiros organismos fotossintéticos provavelmente se desenvolveram no início da história evolutiva da vida e provavelmente usavam agentes redutores como hidrogênio ou sulfeto de hidrogênio, em vez de água, como fontes de elétrons.[6] As cianobactérias apareceram mais tarde; o excesso de oxigênio que elas produziram contribuiu diretamente para a oxigenação da Terra,[7] o que tornou possível a evolução de formas de vida complexas. Hoje, a taxa média global de captura de energia pela fotossíntese é de aproximadamente 130 terawatts,[8][9][10] que é cerca de oito vezes o consumo atual de energia da civilização humana.[11] Organismos fotossintéticos também convertem cerca de 100 a 115 bilhões de toneladas (91–104 de petagramas, ou bilhões de toneladas métricas) de carbono em biomassa por ano.[12][13] A fotossíntese também é vital para os processos climáticos, pois captura o dióxido de carbono do ar e depois junta o carbono nas plantas e, posteriormente, nos solos e nos produtos colhidos. Estima-se que os cereais sozinhos se ligam a 3825 teragramas ou 3,825 petagramas de dióxido de carbono a cada ano, ou seja, 3,825 bilhões de toneladas métricas.[14]
A fotossíntese é um processo físico-químico, a nível celular, realizado pelos seres vivos clorofilados, que utilizam dióxido de carbono e água, para obter glicose através da energia da luz solar, de acordo com a seguinte equação:
Luz solar | + | 12H2O Água |
+ | 6CO2 Dióxido de carbono |
→ | 6O2 Oxigênio |
+ | 6H2O Água |
+ | C6H12O6 Glicose |
A fotossíntese inicia a maior parte das cadeias alimentares na Terra. Sem ela, os animais e muitos outros seres heterotróficos seriam incapazes de sobreviver porque a base da sua alimentação estará sempre nas substâncias orgânicas proporcionadas pelas plantas verdes. A maior parte da vida na Terra usa a luz vermelha visível na fotossíntese, mas algumas usam luz infravermelha.[15]
Aristóteles tinha observado e descrito que as plantas necessitavam de luz solar para adquirir a sua cor verde. No entanto, só em 1771, a fotossíntese começou a ser estudada por Joseph Priestley. Este químico inglês, confinando uma planta numa redoma de cristal comprovou a produção de uma substância que permitia a combustão e que, em certos casos, avivava a chama de um carvão em brasa. Posteriormente, concluiu-se que a substância observada era o gás oxigênio.
As plantas possuem folhagem de coloração verde pois essa frequência de onda eletromagnética é refletida por não ser aproveitada de forma eficiente no processo da fotossíntese em que se converte a energia luminosa em química. Dessa forma, se um vegetal for iluminado somente com luz monocromática verde a taxa de fotossíntese será insuficiente para garantir a sua sobrevivência e ocorrerá a atrofia dos tecidos da planta, podendo resultar na morte do organismo.
Enquanto a luz verde é a que gera o menor rendimento fotossintético, as frequências de luz azul, violeta e vermelho são as que apresentam o maior índice de absorção pela clorofila.[16]
Em 1778, Jan Ingenhousz, físico-químico neerlandês, verificou que uma vela colocada dentro de um frasco fechado não se apagava, desde que houvesse também no frasco partes verdes de plantas e o frasco estivesse exposto à luz, ou seja, que na presença de luz, as plantas libertam oxigénio.[17]
Nicolas-Théodore de Saussure, já no início do século XIX descobriu que os vegetais incorporavam água em seus tecidos. Com o passar do tempo, os avanços no campo óptico e as tecnologias de estudo aprimoradas, possibilitaram os conhecimentos em relação a nutrição vegetal.
Uma observação importante foi que o azoto, assim como diversos sais e minerais, era retirado do solo pelas plantas e que a energia proveniente do Sol se transformava em energia química, ficando armazenada numa série de produtos em virtude de um processo que então acabou por ser chamado de fotossíntese.
A substância chamada de clorofila foi isolada na segunda década do século XIX. Ainda naquele século, descobriu-se que a clorofila era a responsável pela cor verde das plantas, além de desempenhar um papel importante na síntese da matéria orgânica. Julius von Sachs demonstrou que a clorofila se localizava nos chamados organelos celulares, que, por meio de estudos mais apurados, foram chamados de cloroplastos.
Ao avançarem as técnicas bioquímicas, em 1954 foi possível o isolamento e extracção destes organelos. Foi Daniel Israel Arnon quem obteve cloroplastos a partir das células do espinafre, conseguindo reproduzir em laboratório as reações completas da fotossíntese.
Com estas técnicas, descobriu-se, por exemplo, que a fotossíntese ocorre ao longo de duas etapas:
Equação: 12H2O + 6NADP + 9ADP + 9P -(luz)→ 9ATP + 6NADPH2 + 3O2+ 6H2O
Equação: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Plantas jovens consomem mais dióxido de carbono e libertam mais oxigénio, pois o carbono é incorporado a sua estrutura física durante o crescimento.
É importante realçar que a "fase escura" (cuja melhor definição é: reações de assimilação de carbono) não ocorre apenas à noite ou na ausência de luz, o nome refere-se ao facto desta fase não necessitar da luz para funcionar. Ela acontece logo após a fase clara numa reação em cadeia até que o substrato se esgote.
A equação geral da formação de glicose é resultado da soma das duas equações:
Equação simplificada da fase fotoquímica: 12H2O + 12NADP + 18ADP + 18P -(luz)→ 18ATP + 12NADPH2 + 6O2
Equação simplificada da fase química: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Somando-as e simplificando, obtém-se a equação geral da fotossíntese: 12H2O + 6CO2 → 6O2 +C6H12O6 + 6H2O
Além das plantas verdes, incluem-se entre os organismos fotossintéticos, as algas (como as diatomáceas, as euglenófitas), as cianofíceas (algas verde-azuladas) e diversas bactérias.
Os cientistas desenvolveram um sistema de proteína fotossintética usando clorofila e bacterioclorofila para aprimorar uma abordagem mais sustentável dos dispositivos tecnológicos movidos a energia solar.[19] Ao fazer isso, os cientistas demonstraram que os dois sistemas de pigmentos poderiam trabalhar juntos para obter a conversão de energia solar.[20]
É chamado "ponto de compensação fótico" o instante em que as velocidades de fotossíntese e respiração são exatamente ou simplesmente as mesmas. Neste instante toda a glicose produzida na fotossíntese é "quebrada" na respiração, e todo dióxido de carbono(CO2) gasto na fotossíntese é produzido na respiração.
A fotossíntese é o principal processo de transformação de energia na biosfera. Ao alimentarmo-nos, parte das substâncias orgânicas, produzidas graças à fotossíntese, entram na nossa constituição celular, enquanto outras (os nutrientes energéticos) fornecem a energia necessária às nossas funções vitais, como o crescimento e a reprodução. Além do mais, ela fornece oxigênio para a respiração dos organismos heterotróficos. É essencial para a manutenção da vida na Terra.
De acordo com a teoria da geração orgânica do petróleo, indiretamente energia química presente no petróleo e no carvão, que são utilizados pelo ser humano como combustíveis, têm origem na fotossíntese, pois, são produtos orgânicos provenientes de seres vivos (plantas ou seres que se alimentavam de plantas) de outras eras geológicas.
Essa incorporação inicial de carbono em compostos orgânicos é conhecida como fixação de carbono.
×1015 gramas de carbono/ano fixados por organismos fotossintéticos, o que equivale a 100×1018 kJ/ano = 4×1021 J/ano de energia livre armazenada como carbono reduzido. 4
A taxa global média de fotossíntese é de 130 TW.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.