Tensor napięć-energii
Z Wikipedii, wolnej encyklopedii
Tensor energii-pędu (zwany też tensorem napięć-energii) – tensor drugiego rzędu. Jest używany na przykład w ogólnej teorii względności, w której wchodzi w skład równań Einsteina i pełni rolę źródła zakrzywienia czasoprzestrzeni odczuwanego jako grawitacja.
Definicja
Podsumowanie
Perspektywa
W szczególnej i ogólnej teorii względności przyjmuje się następujące indeksowanie składowych tensora napięć-energii:
- – indeks czasowy,
- – indeksy przestrzenne.
Definicja
Składowa tensora napięć-energii jest równa składowej strumienia wektora czteropędu przepływającego przez hiperpowierzchnię o stałej współrzędnej w czasoprzestrzeni.
Własność symetrii
Tensor napięć-energii w czterowymiarowej czasoprzestrzeni ma wymiary 4×4. Tensor napięć-energii jest w teorii względności symetryczny, tj.[1]
W teoriach alternatywnych, jak np. teoria Einsteina-Cartana tensor napięć-energii może nie być dokładnie symetryczny. W takich teoriach nie obowiązuje np. zasada zachowania spinu, choć obowiązuje zasada zachowania momentu pędu – spin może zamieniać się w orbitalny moment pędu i na odwrót. Przy symetrycznym tensorze napięć-energii spin i orbitalny moment pędu są zachowane.
Przykład
Jeżeli mamy strumień cząstek w przestrzeni, to aby obliczyć składową w danym punkcie oblicza się sumę składowych czterowektora pędu cząstek, które przechodzą przez mały element hiperpowierzchni prostopadłej do wektora bazowego odpowiadającego wymiarowi i dzieli przez wielkość tej hiperpowierzchni.
Sens fizyczny składowych tensora napięć-energii
Podsumowanie
Perspektywa
(1) Składowa tensora napięć-energii jest równa gęstości energii w pobliżu danego punktu.
(2) Składowe oraz gdzie to gęstość pędu (pomnożona przez ) w pobliżu danego punktu (łączna wartość pędu w danym obszarze, dzielona przez objętość tego obszaru).
(3) Składowe gdzie tworzą tensor napięć (pojęcie analogiczne do tensora napięć znanego w technice):
a) składowe diagonalne tego tensora to ciśnienie,
b) składowe pozadiagonalne to naprężenie ścinające.
Postać macierzowa tensora napięć-energii
Podsumowanie
Perspektywa
Tensor napięć-energii jest tensorem drugiego rzędu, dlatego jego składowe można przedstawić w postaci macierzy 4×4[2]:
lub też, identyfikując odpowiednie składowe z wielkościami fizycznymi
gdzie:
- – gęstość energii,
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle p^x,p^y,p^z} – składowe gęstości pędu (pomnożone przez ),
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle P^{xx}, P^{yy}, P^{zz}} – ciśnienia,
- – naprężenia ścinające.
Przykłady tensora napięć-energii
Podsumowanie
Perspektywa
Cząstka izolowana
Dla cząstki izolowanej (nie oddziałującej z otoczeniem) o masie m, znajdującej się w położeniu tensor napięć-energii ma postać:
gdzie:
- – składowe wektora prędkości (nie należy mylić z 4-wektorem prędkości, który dodatkowo zawiera czynnik Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle \gamma = \frac{1}{\sqrt{1 - (v/c)^2}}} ), tzn.
- – delta Diraca,
- – całkowita energia cząstki.
Wiele cząstek punktowych
Dowolny rozkład materii/energii można otrzymać ze zbioru cząstek punktowych.
Dlatego tensor napięć-energii można wyrazić za pomocą sumy tensorów napięć-energii pojedynczych cząstek. Tensor ten dla pojedynczej cząstki ma postać
w położeniu, gdzie cząstka znajduje się aktualnie, zaś zero wszędzie indziej. Tensor ten zmienia się w ogólności w czasie, gdy zmienia się w czasie położenie i prędkość cząstki. Zmienna jest wektorem prędkości, tj. równym pochodnej położenia cząstki względem czasu (nie czasu własnego)
Widać stąd, że wszystkie składowe tensora napięć-energii mają jednakowy wymiar
Aby otrzymać tensor napięć-energii w przypadku zbioru wielu cząstek sumuje się tensory dla cząstek punktowych i dzieli przez objętość, jaką zajmuje zbiór cząstek – w ten sposób składowe tensora będą gęstościami pędu i ciśnienia, średnimi dla dyskretnego zbioru cząstek.
Element jest energią cząstki. Stąd, jeżeli dodamy energie wszystkich cząstek punktowych, to otrzymamy całkowitą energię.
Elementy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle T_{i0}=\gamma m v_i c} oznaczają pędy cząstek w kierunki mnożone przez prędkość światła Stąd, jeżeli dodamy te elementy od wszystkich cząstek punktowych, to otrzymamy całkowity pęd w kierunku mnożony przez prędkość światła czyli prędkość w kierunku osi czasu.
Podobnie, niediagonalne elementy dla zbioru cząstek dodane do siebie dają sumę pędów cząstek w kierunku mnożonych przez ich prędkości w kierunku
Elementy diagonalne wyglądają jak energie kinetyczne. W zbiorze cząstek chaotycznie poruszających się, jak np. w gazie, energia kinetyczna związana jest z ciśnieniem, dlatego elementy diagonalne odpowiadają za ciśnienie.
Tensor napięć-energii płynu w równowadze
Dla płynu idealnego w równowadze termodynamicznej tensor napięć-energii ma prostą postać[3]
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle T^{\alpha \beta} = \left(\rho + \frac{p}{c^2}\right)u^\alpha u^\beta + p g^{\alpha \beta},}
gdzie:
- – gęstość masy-energii [kg/m³],
- – ciśnienie hydrostatyczne [Pa],
- – czteroprędkość płynu,
- – odwrotny tensor metryczny.
Ślad tego tensora wynosi
a czteroprędkość spełnia równanie
W układzie odniesienia poruszającym się z płynem, zwanym właściwym układem odniesienia, mamy
Odwrotny tensor metryczny ma postać
Tensor napięć-energii jest diagonalny
Elektromagnetyczny tensor napięć-energii
Tensor napięć-energii Hilberta dla pozbawionego źródeł pola elektromagnetycznego ma postać:
gdzie – tensor pola elektromagnetycznego.
Pole skalarne
Tensor napięć-energii dla pola skalarnego które jest rozwiązaniem równania Kleina-Gordona ma postać
Gdy metryka jest płaska (metryka Minkowskiego), to otrzyma się:
Przybliżenie quasi-klasyczne
Podsumowanie
Perspektywa
Uważa się, że najdokładniejszy opis oddziaływanie pola grawitacyjnego z materią da kwantowa teoria grawitacji, traktująca materię i pole grawitacyjne jako układy kwantowe. Nie istnieje jednak jak dotąd kwantowa teoria grawitacji, choć podejmowane są liczne próby jej sformułowania.
Pierwszym podejściem w tym kierunku jest tzw. przybliżenie quasi-klasyczne, które traktuje pole grawitacyjnie w sposób klasyczny, a materię kwantowo, tzn. modyfikuje się równania Einsteina do postaci
czyli:
- tensor pola grawitacyjnego (tensor Einsteina) pozostaje bez zmian,
- tensora energii-pędu materii zastępuje się przez średni statystyczne tensor energii-pędu
przy czym średni statystyczna zależy od funkcji falowej określającej stan kwantowy materii.
Tensor energii pędu jest teraz określony przez gęstość energii i ciśnienie układu fizycznego
gdzie jest wektorem jednostkowym Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „http://localhost:6011/pl.wikipedia.org/v1/”:): {\displaystyle \epsilon} jest przestrzennym rozkładem energii, a rozkładem ciśnienia.
Np. w płaskiej przestrzeni Minkowskiego wektor jednostkowy i tensor energii-pędu ma postać macierzową
Aby rozwiązać równania Einsteina musi być podana pełna informacja o układzie fizycznym, dlatego trzeba zadać dodatkowo równanie stanu materii (EOS), określające zależność ciśnienia od gęstości materii
Zobacz też
Przypisy
Bibliografia
Wikiwand - on
Seamless Wikipedia browsing. On steroids.