Remove ads
homomorfizm grupy w pełną grupę liniową Z Wikipedii, wolnej encyklopedii
Reprezentacja grupy – każdy homomorfizm grupy w grupę przekształceń liniowych odwracalnych ustalonej przestrzeni liniowej nad zadanym ciałem.
Reprezentacją grupy w przestrzeni liniowej nad ciałem jest homomorfizm grupy w pełną grupę liniową
Wymiar przestrzeni wektorowej nazywamy wymiarem reprezentacji.
Jeśli jest skończona, to minimalnym (bądź wiernym) stopniem tej grupy, oznaczanym symbolem nazywa się najmniejszą liczbę naturalną dla której jest podgrupą grupy symetrycznej rzędu dowolne takie zawieranie nazywa się minimalną (bądź wierną) reprezentacją grupy
Niech będzie zespoloną przestrzenią wektorową. Charakterem reprezentacji nazywamy odwzorowanie gdzie zaś jest operatorem śladu.
Suma prosta reprezentacji to odwzorowanie przypisujące dwu reprezentacjom danej grupy nad tym samym ciałem reprezentację przypisującą każdemu elementowi grupy sumę prostą odwzorowań przypisywanych mu przez te reprezentacje.
Dla
jest to
Analogicznie iloczyn tensorowy reprezentacji to odwzorowanie przypisujące dwu reprezentacjom danej grupy nad tym samym ciałem reprezentację przypisującą każdemu elementowi grupy iloczyn tensorowy odwzorowań przypisywanych mu przez te reprezentacje.
Dla
jest to
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.