Prawa De Morgana

reguły w logice i teorii mnogości Z Wikipedii, wolnej encyklopedii

Prawa De Morgana – zestaw reguł w logice matematycznej i teorii mnogości wiążących ze sobą pary spójników, kwantyfikatorów lub działań na zbiorach za pomocą negacji lub funkcji dopełnienia zbioru. Prawa te są twierdzeniami w niektórych teoriach formalnych, np. w logice klasycznej, lub aksjomatami definiującymi niektóre struktury jak algebry De Morgana.

Prawa te sformułował angielski matematyk Augustus De Morgan w XIX wieku.

Logika

Podsumowanie
Perspektywa
I prawo De Morgana
Prawo zaprzeczania koniunkcji: negacja koniunkcji jest równoważna alternatywie negacji

gdzie i oznaczają zdania w sensie logiki.

II prawo De Morgana
Prawo zaprzeczenia alternatywy: negacja alternatywy jest równoważna koniunkcji negacji

Prawa umożliwiają definiowanie jednych spójników zdaniowych za pomocą innych. Na przykład korzystając z koniunkcji i negacji, za pomocą prawa podwójnej negacji można określić alternatywę:

Tabele wartości logicznych

Więcej informacji , ...
1110000
1001011
0101101
0001111
Zamknij
Więcej informacji , ...
1110000
1010010
0110100
0001111
Zamknij

Porównanie wartości w czwartej i siódmej kolumnie ostatniego wiersza obu tabel (oznaczonych kolorem żółtym) daje przekonanie o prawdziwości wyrażeń

oraz

bez względu na wartościowanie zmiennych i (ma ono zawsze wartość logiczną równą 1). Zdania takie jak nazywa się tautologiami.

Rachunek kwantyfikatorów

Podsumowanie
Perspektywa

Do praw De Morgana należą też reguły zaprzeczania kwantyfikatorom[1]:

gdzie jest dowolnym zdaniem zależnym od zmiennej

Teoria mnogości

Podsumowanie
Perspektywa
Thumb
Ilustracja mnogościowych praw De Morgana – obie strony równości zaznaczono na niebiesko.

W teorii mnogości prawa De Morgana służą opisowi działania dopełnienia (lub dokładniej: różnicy zbiorów):

  1. dopełnienie sumy zbiorów jest równe części wspólnej ich dopełnień
  2. dopełnienie części wspólnej zbiorów jest równe sumie ich dopełnień

Z zasady indukcji matematycznej to samo prawo zachowane jest dla skończenie wielu zdarzeń:

gdzie

Analogicznie wysławia się i zapisuje prawa De Morgana dla nieskończonych rodzin zbiorów (w powyższych wzorach należy przyjąć, że jest taką rodziną).

Algebry Boole’a

Jeżeli jest zupełną algebrą Boole’a, to dla

Przypisy

Bibliografia

Linki zewnętrzne

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.