Loading AI tools
zbiór punktów skupienia Z Wikipedii, wolnej encyklopedii
Pochodna zbioru – dla danego zbioru w przestrzeni topologicznej zbiór wszystkich jego punktów skupienia[1]. Pochodną zbioru oznacza się niekiedy także
W przestrzeni T1 pochodna ma następujące własności:
Elementy to punkty izolowane zbioru Punkt wtedy i tylko wtedy, gdy istnieje otoczenie otwarte punktu takie, że
Niech będzie liczbą porządkową, niech będzie przestrzenią topologiczną, podzbiorem Pochodną Cantora-Bendixsona rzędu zbioru definiujemy przez indukcję pozaskończoną w następujący sposób
Dla każdego zbioru istnieje liczba porządkowa taka, że Najmniejszą liczbę porządkową o tej własności nazywamy rangą Cantora-Bendixsona zbioru a zbiór nazywamy jądrem doskonałym zbioru Jądro doskonałe jest zbiorem doskonałym. Jeśli jest zbiorem domkniętym, to jego jądro doskonałe jest w nim zawarte.
Jeśli dla przestrzeni topologicznej istnieje liczba porządkowa taka, że to jest tzw. przestrzenią rozproszoną.
Jeśli to ranga Cantora-Bendixsona zbioru jest przeliczalną liczbą porządkową, symbolicznie Wynika to z faktu, że ciąg składa się ze zbiorów domkniętych. Gdyby ten ciąg nie stabilizował się po przeliczalnie wielu krokach, to byłby nieprzeliczalnym ciągiem zstępującym zbiorów domkniętych, co przeczyłoby ośrodkowości
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.