Loading AI tools
typ struktury algebraicznej konstruowany z dowolnego zbioru Z Wikipedii, wolnej encyklopedii
Półgrupa transformacji – półgrupa wszystkich funkcji (transformacji) pewnego zbioru w siebie z działaniem składania. Nazywana również pełną półgrupą transformacji dla odróżnienia od jej podpółgrup. Jest podpółgrupą półgrupy relacji binarnych na zbiorze, a także półgrupy transformacji częściowych zbioru w siebie. Półgrupa transformacji zbioru zawiera grupę permutacji tego zbioru jako podpółgrupę.
A.H. Clifford i G.B. Preston oznaczają półgrupę wszystkich transformacji zbioru symbolem [1] i będzie on stosowany również poniżej. J.M. Howie używa symbolu [2].
W poniższym stosowana będzie standardowa w teorii półgrup konwencja pisania argumentów funkcji na lewo od symbolu oznaczającego funkcję. Tak więc zamiast pisać będziemy
Relacje Greena na dają się scharakteryzować za pomocą poniższego twierdzenia[3].
Niech Niech, dla każdego oznacza relację następującą relację równoważności (jądro ):
Wtedy
Klasy relacji są oczywiście przecięciami klas relacji i
Łatwo jest w zidentyfikować idempotenty; są to po prostu rzuty, czyli przekształcenia działające identycznościowo na swoim obrazie. Stąd i z powyższego twierdzenia wynika regularność
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.