Najlepsze pytania
Chronologia
Czat
Perspektywa

Półgrupa transformacji

typ struktury algebraicznej konstruowany z dowolnego zbioru Z Wikipedii, wolnej encyklopedii

Remove ads

Półgrupa transformacjipółgrupa wszystkich funkcji (transformacji) pewnego zbioru w siebie z działaniem składania. Nazywana również pełną półgrupą transformacji dla odróżnienia od jej podpółgrup. Jest podpółgrupą półgrupy relacji binarnych na zbiorze, a także półgrupy transformacji częściowych zbioru w siebie. Półgrupa transformacji zbioru zawiera grupę permutacji tego zbioru jako podpółgrupę.

Oznaczenia

A.H. Clifford i G.B. Preston oznaczają półgrupę wszystkich transformacji zbioru symbolem [1] i będzie on stosowany również poniżej. J.M. Howie używa symbolu [2].

W poniższym stosowana będzie standardowa w teorii półgrup konwencja pisania argumentów funkcji na lewo od symbolu oznaczającego funkcję. Tak więc zamiast pisać będziemy

Remove ads

Relacje Greena i regularność

Podsumowanie
Perspektywa

Relacje Greena na dają się scharakteryzować za pomocą poniższego twierdzenia[3].

Charakteryzacja relacji Greena

Niech Niech, dla każdego oznacza relację następującą relację równoważności (jądro ):

wtedy i tylko wtedy, gdy

Wtedy

wtedy i tylko wtedy, gdy (czyli i mają ten sam obraz);
wtedy i tylko wtedy, gdy (czyli i mają to samo jądro);
wtedy i tylko wtedy, gdy (czyli obrazy i mają równą moc);

Klasy relacji są oczywiście przecięciami klas relacji i

Regularność

Łatwo jest w zidentyfikować idempotenty; są to po prostu rzuty, czyli przekształcenia działające identycznościowo na swoim obrazie. Stąd i z powyższego twierdzenia wynika regularność

Remove ads

Przypisy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads