Najlepsze pytania
Chronologia
Czat
Perspektywa

Aproksymacja wielomianowa

Z Wikipedii, wolnej encyklopedii

Aproksymacja wielomianowa
Remove ads

Aproksymacja wielomianowa – metoda aproksymacji polegająca na przybliżeniu funkcji za pomocą wielomianu.

Thumb
Przykładowe wielomiany różnych stopni

Sformułowanie problemu

Wiemy, że dla pewnego zbioru punktów funkcja przyjmuje wartości Naszym celem jest znalezienie wielomianu w postaci[1]:

takiego, aby przybliżenie funkcji w punktach było jak najlepsze. Funkcję oceny jakości wielomianu można zdefiniować w różny sposób, często stosowane kryteria to[2]:

Remove ads

Aproksymacja wielomianowa średniokwadratowa

Podsumowanie
Perspektywa

W aproksymacji średniokwadratowej wielomianowej funkcja błędu jest zdefiniowana następująco:

Współczynnik jest ustaloną funkcją wagową. Najczęściej przyjmuje się, że funkcja wagowa zawsze przyjmuje wartość 1 – wówczas możemy ten czynnik pominąć[3].

Funkcja ta osiąga minimum w punkcie, w którym pochodne cząstkowe względem współczynników są równe zero. W celu znalezienia tego minimum należy rozwiązać zatem układ równań[3]:

Po przekształceniach układ ten można sprowadzić do postaci[4]:

Układ ten można rozwiązać, stosując np. wzory Cramera lub metodę Gaussa-Seidla.

Remove ads

Stopień wielomianu

Liczba współczynników wielomianu powinna być mniejsza od liczby punktów, które ma przybliżać funkcja Dla zawsze jest możliwe wyznaczenie wielomianu przechodzącego dokładnie przez podane punkty – wówczas problem sprowadza się do interpolacji wielomianowej[4].

Przypisy

Loading content...

Bibliografia

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads