Loading AI tools
powierzchnia jednostronna z brzegiem Z Wikipedii, wolnej encyklopedii
Wstęga Möbiusa – szczególna powierzchnia jednostronna opisana niezależnie[1] przez niemieckich matematyków Augusta Möbiusa[1][2][3] i Johanna Benedicta Listinga[1][4] w 1858 roku[1][5][6]: dwuwymiarowa zwarta rozmaitość topologiczna, nieorientowalna z brzegiem.
Jej model można uzyskać, sklejając taśmę końcami przy odwróceniu jednego z końców o kąt 180°[7][8][9][10]. Stylizowana wstęga Möbiusa jest symbolem recyklingu[11]; w innej stylizacji jest obecna w logotypie Międzynarodówki humanistycznej. W sztuce znana jest z grafiki Mauritsa Cornelisa Eschera przedstawiającej mrówki idące po wstędze Möbiusa[12].
Wstęga Möbiusa przy odpowiednim ułożeniu przypomina symbol nieskończoności co może prowadzić do błędnych przypuszczeń, że symbol ten pochodzi od wstęgi Möbiusa[a].
Wstęgę Möbiusa można skonstruować z prostokąta wprowadzając relację dla która utożsamia dwie przeciwległe krawędzie, wraz z topologią ilorazową względem relacji [14].
Innym sposobem jest określenie parametryzacji tej powierzchni[10]. Niech dany będzie odcinek długości i środku poruszający się w przestrzeni o początku układu w ten sposób, że punkt zakreśla okrąg sparametryzowany równaniami:
gdzie [10]. Niech odcinek będzie stale prostopadły do a kąt nachylenia tego odcinka do płaszczyzny niech równa się [10]. Wtedy odcinek zakreśla wstęgę Möbiusa o parametryzacji:
gdzie oraz [10]. Zmiana parametru powoduje poruszanie punktu wzdłuż wstęgi, zmiana parametru – w poprzek.
Wstęgę Möbiusa można zanurzyć w przestrzeni trójwymiarowej. Jej nieorientowalność oznacza, że ma tylko jedną stronę, tzn. jest powierzchnią jednostronną[1][15][10]. W przypadku gładkich parametryzacji oznacza to, że oś normalna wstęgi Möbiusa nie może być funkcją ciągłą na całej powierzchni wstęgi[14].
Jej brzeg jest homeomorficzny z okręgiem. Oznacza to, wstęga ma tylko jedną intuicyjnie rozumianą krawędź, w przeciwieństwie np. do powierzchni bocznej walca, która ma dwie krawędzie. „Zaklejenie” tego brzegu (niemożliwe w przestrzeni trójwymiarowej) kołem daje płaszczyznę rzutową, „zaklejenie” tego brzegu inną wstęgą Möbiusa daje butelkę Kleina[16]. Płaszczyzna rzutowa i butelka Kleina są innymi przykładami powierzchni nieorientowalnej. Zachodzi ogólna własność: powierzchnia jest nieorientowalna wtedy i tylko wtedy, gdy zawiera podzbiór homeomorficzny ze wstęgą Möbiusa.
Charakterystyka Eulera tej powierzchni jest równa 0[17][18].
Rozcięcie wstęgi Möbiusa wzdłuż jej linii środkowej nie powoduje jej rozkładu na dwa rozłączne obiekty[1][7][19], lecz powoduje otrzymanie dwukrotnie dłuższej, dwukrotnie skręconej obręczy (posiadającej dwie strony). Rozcięcie wstęgi Möbiusa wzdłuż w jednej trzeciej szerokości powoduje otrzymanie jednej węższej wstęgi Möbiusa o długości równej wyjściowej wstędze oraz splecionej z nią dwukrotnie dłuższej, dwukrotnie skręconej obręczy. W wyniku przecięcia taśmy skręconej przed sklejeniem nie o 180°, jak w przypadku wstęgi Möbiusa, ale 360°, otrzymuje się dwa kręgi węzłowe, połączone jak ogniwa w łańcuchu[19].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.