W 1919 roku norweski matematyk Viggo Brun udowodnił, że szereg odwrotności liczb bliźniaczych jest zbieżny[2]:
Liczba 5 jest bliźniacza zarówno z 3, jak i z 7. Nie istnieje inna liczba pierwsza bliźniacza z dwiema liczbami.
Dowód:
Istnieją trzy możliwe przypadki ciągu liczb naturalnych o różnicy 2 dla naturalnego: lub W każdym z nich jest jedna liczba podzielna przez 3: odpowiednio: i Oznacza to, że aby w ciągu trzech liczb naturalnych wszystkie były pierwsze, jedna z nich musi być równa 3. Istnieją dwa takie ciągi: i lecz 1 z definicji nie jest liczbą pierwszą.
Największe znane dziś liczby bliźniacze, każda składająca się z 388 342 cyfr, to 2996863034895·21290000 ± 1 znalezione w 2016 roku[3],
Z wyjątkiem par 3 i 5 oraz 5 i 7, ostatnimi cyframi liczb bliźniaczych mogą być: 1 i 3 (na przykład 11 i 13), 7 i 9 (na przykład 17 i 19) oraz 9 i 1 (na przykład 29 i 31).
Dla każdej pary liczb bliźniaczych większych lub równych 5, liczba naturalna między nimi (rozdzielająca parę) jest podzielna przez 6. Wynika to z faktu, że jest ona parzysta i ponieważ w każdej trójce kolejnych liczb jest liczba podzielna przez trzy (bo dwie pozostałe są pierwsze), to mamy również podzielność przez iloczyn liczb dwa i trzy.